Skip to main content
Log in

Zero-knowledge proofs of retrievability

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Proof of retrievability (POR) is a technique for ensuring the integrity of data in outsourced storage services. In this paper, we address the construction of POR protocol on the standard model of interactive proof systems. We propose the first interactive POR scheme to prevent the fraudulence of prover and the leakage of verified data. We also give full proofs of soundness and zero-knowledge properties by constructing a polynomialtime rewindable knowledge extractor under the computational Diffie-Hellman assumption. In particular, the verification process of this scheme requires a low, constant amount of overhead, which minimizes communication complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Juels A, Kaliski-Jr B S. Pors: Proofs of retrievability for large files. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007. Alexandria: ACM, 2007. 584–597

    Chapter  Google Scholar 

  2. Ateniese G, Burns R C, Curtmola R, et al. Provable data possession at untrusted stores. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007. Alexandria: ACM, 2007. 598–609

    Chapter  Google Scholar 

  3. Bowers K D, Juels A, Oprea A. Proofs of retrievability: Theory and implementation. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009. Chicago: ACM, 2009. 43–54

    Chapter  Google Scholar 

  4. Odis Y, Vadhan S P, Wichs D. Proofs of retrievability via hardness amplification. In: Reingold O, ed. Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009. Lecture Notes in Computer Science, vol. 5444. San Francisco: Springer-Verlag, 2009. 109–127

    Google Scholar 

  5. Wang Q, Wang C, Li J, et al. Enabling public verifiability and data dynamics for storage security in cloud computing. In: Proceedings of the 14th European Symposium on Research in Computer Security, ESORICS 2009. Saint-Malo: Springer-Verlag, 2009. 355–370

    Google Scholar 

  6. Shacham H, Waters B. Compact proofs of retrievability. In: Advances in Cryptology — ASIACRYPT 2008, 14th International Conference on the Theory and Application of Cryptology and Information Security. Melbourne: Springer-Verlag, 2008. 90–107

    Google Scholar 

  7. Goldreich O. Foundations of Cryptography: Basic Tools. Volume Basic Tools. Cambridge: Cambridge University Press, 2001

    Google Scholar 

  8. Christopher Erway C, Küpü A, Papamanthou C, et al. Dynamic provable data possession. In: Proceedings of the 2009 ACM Conference on Computer and Communications Security, CCS 2009. Chicago: ACM, 2009. 213–222

    Chapter  Google Scholar 

  9. Boneh D, Boyen X, Shacham H. Short group signatures. In: Proceedings of CRYPTO 2004, LNCS series. Santa Barbara: Springer-Verlag, 2004. 41–55

    Google Scholar 

  10. Bowers K D, Juels A, Oprea A. Hail: A high-availability and integrity layer for cloud storage. In: ACM Conference on Computer and Communications Security, CCS 2009. Chicago: ACM, 2009. 187–198

    Chapter  Google Scholar 

  11. Boneh D, Franklin M. Identity-based encryption from the weil pairing. In: Advances in Cryptology (CRYPTO’2001), vol. 2139 of LNCS. Santa Barbara: Springer-Verlag, 2001. 213–229

    Google Scholar 

  12. Schnorr C P. Efficient signature generation by smart cards. J Cryptol, 1991, 4: 161–174

    Article  MathSciNet  MATH  Google Scholar 

  13. Cramer R, Damgård I D, MacKenzie P D. Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Public Key Cryptography. Melbourne: Springer-Verlag, 2000. 354–373

    Chapter  Google Scholar 

  14. Barreto P S L M, Galbraith S D, O’Eigeartaigh C, et al. Efficient pairing computation on supersingular abelian varieties. Des Codes Cryptogr, 2007, 42: 239–271

    Article  MathSciNet  MATH  Google Scholar 

  15. Beuchat J L, Brisebarre N, Detrey J, et al. Arithmetic operators for pairing-based cryptography. In: Cryptographic Hardware and Embedded Systems — CHES 2007, 9th International Workshop. Vienna: Springer-Verlag, 2007. 239–255

    Chapter  Google Scholar 

  16. Hu H G, Hu L, Feng D G. On a class of pseudorandom sequences from elliptic curves over finite fields. IEEE Trans Inf Theory, 2007, 53: 2598–2605

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhu or HongXin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Wang, H., Hu, Z. et al. Zero-knowledge proofs of retrievability. Sci. China Inf. Sci. 54, 1608–1617 (2011). https://doi.org/10.1007/s11432-011-4293-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4293-9

Keywords

Navigation