Skip to main content
Log in

Dynamic visual servoing of a small scale autonomous helicopter in uncalibrated environments

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive controller for image-based visual servoing of a small autonomous helicopter to cope with uncalibrated camera parameters and unknown 3D geometry of the feature points. The controller is based on the back-stepping technique, but its design has two new features. First, it incorporates the visual feedback into the last step of the backstepping procedure, while existing backsteppingbased methods employ the visual feedback at the early steps. Second, the controller maps the image errors onto the actuator space via a depth-independent interaction matrix to avoid estimation the depths of the feature points. The new design method makes it possible to linearly parameterize the closed-loop dynamics by the unknown camera parameters and coordinates of the feature points in the 3D space so that an adaptive algorithm can be developed to estimate the unknown parameters and coordinates on-line. Two potential functions are introduced in the controller to guarantee convergence of the image errors and to avoid trivial solutions of the estimated parameters. The Lyapunov method is used to prove the asymptotic stability of the proposed controller based on the nonlinear dynamics of the helicopter. Simulations have been also conducted to demonstrate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saripalli S, Montgomery J F, Sukhatme G S. Visually guided landing of an unmanned aerial vehicle. IEEE Trans Robotic Autom, 2003, 19: 371–381

    Article  Google Scholar 

  2. Mejias L, Campoy P, Saripalli S, et al. A visual servoing approach for tracking features in urban areas using an autonomous helicopter. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE Press, 2006. 2503–2508

    Chapter  Google Scholar 

  3. Shakerina O, Vidal R, Sharp C S, et al. Multiple-view motion estimation and control for landing and unmanned aerial vehicle. In: Proceedings of IEEE International Conference on Robotics and Automation. Washington D C: IEEE Press, 2002. 2793–2798

    Google Scholar 

  4. Guenard N, Hamel T, Mahony R. A practical visual servo control for a unmanned aerial vehicle. In: IEEE International Conference on Robotics and Automation. Roma: IEEE Press, 2007. 1342–1348

    Google Scholar 

  5. Fakhry H H, Wilson W J. Modified resolved acceleration controller for position-Based visual servoing. Math Comp Model, 1996, 24: 1–9

    Article  MATH  Google Scholar 

  6. Wilson W J, Hulls C C W, Bell G S. Relative end-effector control using Cartesian position based visual servoing. IEEE Trans Robotic Autom, 1996, 12: 684–696

    Article  Google Scholar 

  7. Espiau B, Chaumette F, Rives P. A new approach to visual servoing in Robotics. IEEE Trans Robotic Autom, 1992, 8: 313–326

    Article  Google Scholar 

  8. Grosso E, Metta G, Oddera A, et al. Robust visual servoing in 3D reaching tasks. IEEE Trans Robotic Autom, 1996, 12: 732–742

    Article  Google Scholar 

  9. Wang H S, Liu Y H, Zhou D X. Dynamic visual tracking for manipulators using an uncalibrated fixed camera. IEEE Trans Robotic, 2007, 23: 610–617

    Article  Google Scholar 

  10. Liu Y H, Wang H S, Lam K. Dynamic visual servoing of robots in uncalibrated environments. In: Proceedings of IEEE International Conference on Robotics and Automation. Barcelona: IEEE Press, 2005. 3142–3148

    Google Scholar 

  11. Hosada K, Asada M. Versatile visual servoing without knowledge of true Jacobain In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Munich: IEEE Press, 1994. 186–191

    Google Scholar 

  12. Malis E. Visual servoing invariant to changes in camera intrinsic parameters. IEEE Trans Robotic Autom, 2004, 20: 72–81

    Article  Google Scholar 

  13. Papanikolopoulos N P, Khosla P K. Adaptive robotic visual tracking: theory and experiments. IEEE Trans Automat Contr, 1993, 38: 429–445

    Article  MathSciNet  MATH  Google Scholar 

  14. Papanikolopoulos N P, Nelson B J, Khosla P K. Six degree-of-freedom hand/eye visual tracking with uncertain parameters. IEEE Trans Robotic Autom, 1995, 11: 725–732

    Article  Google Scholar 

  15. Piepmeier J A, McMurray G V, Lipkin H. Uncalibrated dynamic visual servoing. IEEE Trans Robotic Autom, 2004, 20: 143–147

    Article  Google Scholar 

  16. Ruf A, Tonko M, Horaud R, et al. Visual tracking of an end-effector by adaptive kinematic prediction. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Grenoble: IEEE Press, 1997. 893–898

    Google Scholar 

  17. Shakernia O, Ma Y, Koo T J, et al. Landing an unmanned air vehicle: vision-based motion estimation and nonlinear control. Asian J Contr, 1999, 1: 128–146

    Article  Google Scholar 

  18. Zhang H, Ostrowski J P. Visual servoing with dynamics: control of an unmanned blimp. In: Proceedings IEEE International Conference on Robotics and Automation. Detroit: IEEE Press, 1999. 618–623

    Google Scholar 

  19. Hamel T, Mahony R. Visual servoing of a class of under-actuated dynamic rigid-body systems. In: Proceedings of the 39th Conference on Decision and Control. Sydney: IEEE Press, 2000. 3933–3938

    Google Scholar 

  20. Chriette A, Hamel T, Mahony R. Visual servoing for a scale model autonomous helicopter. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation. Seoul: IEEE Press, 2001. 1701–1706

    Google Scholar 

  21. Mahony R, Hamel T, Dzul A. Hover control via Lyapunov control for an autonomous model helicopter. In: Proceedings of the 38th Conference on Decision & Control. Phoenix: IEEE Press, 1999. 3490–3495

    Google Scholar 

  22. Koo J T, Sastry S. Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th Conference on Decision and Control. Tampa: IEEE Press, 1998. 3636–3640

    Google Scholar 

  23. Hauser J, Sastry S, Meyer G. Nonlinear control design for slightly nonminimum phase system: application to V/STOL aircraft. Automatica, 1992, 28: 665–679

    Article  MathSciNet  MATH  Google Scholar 

  24. Mahony R, Hamel T. Robust trajectory tracking for a scale model autonomous helicopter. Int J Robust Nonlin, 2004, 14: 1035–1059

    Article  MathSciNet  MATH  Google Scholar 

  25. Forsyth D A, Ponce J. Computer Vision: a Modern Approach. NJ: Prentice-Hall Press, 2003. 110–160

    Google Scholar 

  26. Slotine J J, Li W P. On the adaptive control of robot manipulators. Int J Robot Res, 1987, 6: 49–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiZhi Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, C., Liu, Y., Song, B. et al. Dynamic visual servoing of a small scale autonomous helicopter in uncalibrated environments. Sci. China Inf. Sci. 54, 1855–1867 (2011). https://doi.org/10.1007/s11432-011-4271-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4271-2

Keywords

Navigation