Skip to main content
Log in

Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The present paper aims to develop an automatical strategy for generating accurate different-scale microstructures of human tooth enamels (HTEs), and to elaborate a numerical scheme for simulating their elastic responses. At first, the strong governing formulation of these microstructures is briefly constructed, and the relevant weak formulation is then deduced based on the virtual work theorem. Afterwards, a subdividing approach, which cuts the elements intercepted by the interfaces between distinct phases automatically, is established with the aid of the level set method (LSM), and the discrete counterpart of the governing formula is obtained by combining the weak formulation derived and a discretized model. To be noted, two silent merits are found when the elaborated strategy is applied: (1) the continents constituting the microstructures of different scales can be arbitrarily-shaped and conveniently reproduced; (2) the periodic boundary condition commonly employed can be enforced on the external surfaces of representative unit cells (RUCs) with no difficulty. Besides, a boundary value problem (BVP) involving a simplified HTE nanostructure is designed, analytically solved, and hereafter applied to verify the correctness of the proposed strategy. It is observed that both the displacement and stress predictions by the computational approach are in good agreement with the relevant analytical results irrespective of the material combinations applied. Eventually, discussions are made on the influence of material organizations of both the 2D and 3D HTE microstructures at the ultrastructural and repeated rod levels, and some concluding remarks are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He L H, Swain M V. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater, 2008, 1: 18–29

    Article  Google Scholar 

  2. Jia Y F, Xuan F Z. Anisotropic wear behavior of human enamel at the rod level in terms of nanoscratching. Wear, 2012, 290–291: 124–132

    Article  Google Scholar 

  3. Bar-On B, Daniel W H. Enamel and dentin as multi-scale bio-composites. J Mech Behav Biomed Mater, 2012, 12: 174–183

    Article  Google Scholar 

  4. Zheng J, Li Y, Shi M Y, et al. Microtribological behaviour of human tooth enamel and artificial hydroxyapatite. Tribol Int, 2013, 63: 177–185

    Article  Google Scholar 

  5. Zhou Z R, Jin Z M. Biotribology: Recent progresses and future perspectives. Biosurface Biotribology, 2015, 1: 3–24

    Article  Google Scholar 

  6. Meyers M A, Chen P Y, Lin A Y M, et al. Biological materials: Structure and mechanical properties. Prog Mater Sci, 2008, 53: 1–206

    Article  Google Scholar 

  7. Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids, 2004, 52: 1963–1990

    Article  MATH  Google Scholar 

  8. Nanci A. Ten Cate’s Oral Histology: Development, structure and function (Seventh Edition). Missouri: Mosby, 2007

    Google Scholar 

  9. Bar-On B, Wagner H D. Mechanical model for staggered bio-structure. J Mech Phys Solids, 2011, 59: 1685–1701

    Article  MathSciNet  MATH  Google Scholar 

  10. E S F, Shi L, Guo Z G, et al. The recent progress of tribological biomaterials. Biosurface Biotribology, 2015, 1: 81–97

    Article  Google Scholar 

  11. Bechtle S, Ang S F, Schneider G A. On the mechanical properties of hierarchically structured biological materials. Biomaterials, 2010, 31: 6378–6385

    Article  Google Scholar 

  12. Gou M, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun, 2014, 5: 3774

    Article  Google Scholar 

  13. Spears I R. A three-dimensional finite element model of prismatic enamel: A re-appraisal of the data on the Young’s modulus of enamel. J Dental Res, 1997, 76: 1690–1697

    Article  Google Scholar 

  14. Ang S F, Bortel E L, Swain M V, et al. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales. Biomaterials, 2010, 31: 1955–1963

    Article  Google Scholar 

  15. Xie Z H, Swain M V, Swadener G, et al. Effect of microstructure upon elastic behaviour of human tooth enamel. J Biomech, 2009, 42: 1075–1080

    Article  Google Scholar 

  16. Bar-On B, Daniel W H. Effective moduli of multi-scale composites. Composites Sci Tech, 2012, 72: 566–573

    Article  Google Scholar 

  17. An B, Wang R, Zhang D. Role of crystal arrangement on the mechanical performance of enamel. Acta Biomaterialia, 2012, 8: 3784–3793

    Article  Google Scholar 

  18. Bargmann S, Scheider I, Xiao T, et al. Towards bio-inspired engineering materials: Modeling and simulation of the mechanical behavior of hierarchical bovine dental structure. Comp Mater Sci, 2013, 79: 390–401

    Article  Google Scholar 

  19. Ang S F, Saadatmand M, Swain M V, et al. Comparison of mechanical behaviors of enamel rod and interrod regions in enamel. J Mater Res, 2012, 27: 448–456

    Article  Google Scholar 

  20. Lu C, Nakamura T, Korach C S. Effective property of tooth enamel: Monoclinic behavior. J Biomech, 2012, 45: 1437–1443

    Article  Google Scholar 

  21. Shimizu D, Macho G A, Spears I R. Effect of prism orientation and loading direction on contact stresses in prismatic enamel of primates: Implications for interpreting wear patterns. Am J Phys Anthropol, 2005, 126: 427–434

    Article  Google Scholar 

  22. Sui T, Sandholzer M A, Baimpas N, et al. Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation. J Struct Biol, 2013, 184: 136–146

    Article  Google Scholar 

  23. Sui T, Lunt A J G, Baimpas N, et al. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains. Acta Biomaterialia, 2014, 10: 343–354

    Article  Google Scholar 

  24. Ausiello P, Apicella A, Davidson C L, et al. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech, 2001, 34: 1269–1277

    Article  Google Scholar 

  25. Ausiello P, Apicella A, Davidson C L. Effect of adhesive layer properties on stress distribution in composite restorations—A 3D finite element analysis. Dental Mater, 2002, 18: 295–303

    Article  Google Scholar 

  26. Magne P. Efficient 3D finite element analysis of dental restorative procedures using micro-CT data. Dental Mater, 2007, 23: 539–548

    Article  Google Scholar 

  27. Barani A, Keown A J, Bush M B, et al. Mechanics of longitudinal cracks in tooth enamel. Acta Biomaterialia, 2011, 7: 2285–2292

    Article  Google Scholar 

  28. Wang M, Qu X, Cao M, et al. Biomechanical three-dimensional finite element analysis of prostheses retained with/without zygoma implants in maxillectomy patients. J Biomech, 2013, 46: 1155–1161

    Article  Google Scholar 

  29. Yettram A L, Wright K W J, Pickard H M. Finite element stress analysis of the crowns of normal and restored teeth. J Dental Res, 1976, 55: 1004–1011

    Article  Google Scholar 

  30. Spears I R, van Noort R, Crompton R H, et al. The effects of enamel anisotropy on the distribution of stress in a tooth. J Dental Res, 1993, 72: 1526–1531

    Article  Google Scholar 

  31. He L H, Yin Z H, Jansen van Vuuren L, et al. A natural functionally graded biocomposite coating-Human enamel. Acta Biomaterialia, 2013, 9: 6330–6337

    Article  Google Scholar 

  32. Jeng Y R, Lin T T, Hsu H M, et al. Human enamel rod presents anisotropic nanotribological properties. J Mech Behav Biomed Mater, 2011, 4: 515–522

    Article  Google Scholar 

  33. Sethian J A. A fast marching level set method for monotonically advancing fronts.. Proc Natl Acad Sci USA, 1996, 93: 1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang B R, Liu J T, Gu S T, et al. Numerical evaluation of the effective conductivities of composites with interfacial weak and strong discontinuities. Int J Thermal Sci, 2015, 93: 1–20

    Article  Google Scholar 

  35. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng, 1999, 45: 601–620

    Article  MATH  Google Scholar 

  36. Suquet P. Elements of Homogenization Theory for Inelastic Solid Mechanics. Berlin: Spinger-Verlag, 1987. 194–278

    MATH  Google Scholar 

  37. Michel J C, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: A computational approach. Comp Methods Appl Mech Eng, 1999, 172: 109–143

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen P Y, Lin A Y M, Lin Y S, et al. Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater, 2008, 1: 208–226

    Article  Google Scholar 

  39. Guan D, Yan G. A triangular prism variable nodes isoparameter element for calculation of stress field in welded structure. Comput Struct Mech Appl, 1994, 11: 107–112

    Google Scholar 

  40. Viswanath B, Raghavan R, Ramamurty U, et al. Mechanical properties and anisotropy in hydroxyapatite single crystals. Scripta Mater, 2007, 57: 361–364

    Article  Google Scholar 

  41. Xie Z, Swain M V, Hoffman M J. Structural integrity of enamel: Experimental and modeling. J Dental Res, 2009, 88: 529–533

    Article  Google Scholar 

  42. Smith B L, Schäffer T E, Viani M, et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 1999, 399: 761–763

    Article  Google Scholar 

  43. Ge J, Cui F Z, Wang X M, et al. Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials, 2005, 26: 3333–3339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianTao Liu or ZhongRong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Deng, Q., Yang, D. et al. Automatic modeling together with numerical simulation of the different-scale microstructures of human tooth enamels. Sci. China Technol. Sci. 60, 1381–1399 (2017). https://doi.org/10.1007/s11431-016-9006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-9006-4

Keywords

Navigation