Skip to main content
Log in

Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing

  • Article
  • Special Topic: Engineering Mechanics
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

We focus on the hysteretic characteristics of the varying compliance (VC) principal resonance in a ball bearing. The branches of the periodic VC response are traced by the harmonic balance method and the alternating frequency/time domain technique (HB-AFT) embedding Arc-length continuation, and the stability of these solutions is investigated by using Floquet theory. We find that the resonant response displays a swallow-tail structure due to the coupling nonlinearities between the Hertzian contact and the bearing clearance, which differs from the soft hysteresis of the non-loss Hertzian contact resonances. Furthermore, we find that period-1 VC branch cannot completely characterize the response of the system for a large bearing clearance, because multiple instability regions may occur from the cyclic fold, the secondary Hopf bifurcations, supercritical and subcritical period doubling bifurcations, in which case co-existences of period-1, period-2, and even quasi-periodic VC motions emerge in the hysteretic resonant range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y S, Leung A Y T. Bifurcation and Chaos in Engineering. London: Springer, 1998

    Book  MATH  Google Scholar 

  2. Chen Y S, Qin Z H. Singular analysis of two-dimensional bifurcation system. Sci China Tech Sci, 2010, 53: 608–611

    Article  MATH  Google Scholar 

  3. Thompson J M T, Stewart H B, Ueda Y. Safe, explosive, and dangerous bifurcations in dissipative dynamical systems. Phys Rev E, 1994, 49: 1019–1027

    Article  MathSciNet  Google Scholar 

  4. Sankaravelu A, Noah S T, Burger C P. Bifurcation and chaos in ball bearings. In: Bajaj A K, Namachchivaya N S, Brahim R A I, eds. ASME Winter Annual Meeting, Symposium on Nonlinear and Stochastic Dynamics, Chicago, USA, 1994. AMD-Vol 192/DE-Vol 78: 313–325

    Google Scholar 

  5. Ghafari S H, Abdel-Rahman E M, Golnaraghi F, et al. Vibrations of balanced fault-free ball bearings. J Sound Vib, 2010, 329: 1332–1347

    Article  Google Scholar 

  6. Yamamoto T. On the critical speeds of a shaft. Mem Fac Eng, 1954, 6: 160–170

    Google Scholar 

  7. Goggin D G, Darden J M. Limiting critical speed response on the SSME alternate high pressure fuel turbo-pump (ATD HPFTP) with bearing deadband. In: AIAA/SAE/ASME/ASEE 28th Joint Propulsion Conference and Exhibit, Nashville, USA, 1992. AIAA-92-3402

    Google Scholar 

  8. Fukata S, Gad E H, Kondou T, et al. On the radial vibrations of ball bearings (computer simulation). Bull JSME, 1985, 28: 899–904

    Article  Google Scholar 

  9. Mevel B, Guyader J L. Routes to chaos in ball bearings. J Sound Vib, 1993, 162: 471–487

    Article  MATH  Google Scholar 

  10. Mevel B, Guyader J L. Experiments on routes to chaos in ball bearings. J Sound Vib, 2008, 318: 549–564

    Article  Google Scholar 

  11. Tiwari M, Gupta K, Prakash O. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. J Sound Vib, 2000, 238: 723–756

    Article  Google Scholar 

  12. Tiwari M, Gupta K, Prakash O. Dynamic response of an unbalanced rotor supported on ball bearings. J Sound Vib, 2000, 238: 757–779

    Article  Google Scholar 

  13. Bai C Q, Zhang H Y, Xu Q Y. Subharmonic resonance of a symmetric ball bearing-rotor system. Int J Non-Linear Mech, 2013, 50: 1–10

    Article  Google Scholar 

  14. Liu W T, Zhang Y, Feng Z J, et al. Effects of stick-slip on stress intensity factors for subsurface short cracks in rolling contact. Sci China Tech Sci, 2013, 56: 2413–2421

    Article  Google Scholar 

  15. Deng S, Han X H, Qin X P, et al. Subsurface crack propagation under rolling contact fatigue in bearing ring. Sci China Tech Sci, 2013, 56: 2422–2432

    Article  Google Scholar 

  16. Nayak R. Contact vibrations. J Sound Vib, 1972, 22: 297–322

    Article  MATH  Google Scholar 

  17. Rigaud E, Perret-Liaudet J. Experiments and numerical results on non-linear vibrations of an impacting Hertzian contact. Part 1: Harmonic excitation. J Sound Vib, 2003, 265: 289–307

    Google Scholar 

  18. Kostek R. Analysis of the primary and superharmonic contact resonances- part 1. J Theor App Mech-Pol, 2013, 51: 475–486

    Google Scholar 

  19. Nayfeh A H, Mook D T. Nonlinear Oscillations. New York: John Wiley & Sons, 1995

    Book  Google Scholar 

  20. Chen Y S. Nonlinear Vibrations (in Chinese). Beijing: Higher Education Press, 2002

    Google Scholar 

  21. Dong H, Zeng J, Xie J H, et al. Bifurcation\instability forms of high speed railway vehicles. Sci China Tech Sci, 2013, 56: 1685–1696

    Article  Google Scholar 

  22. Hou L, Chen Y S. Analysis of 1/2 sub-harmonic resonance in a maneuvering rotor system. Sci China Tech Sci, 2014, 57: 203–209

    Article  Google Scholar 

  23. Gao S H, Long X H, Meng G. Nonlinear response and nonsmooth bifurcations of an unbalanced machine-tool spindle-bearing system. Nonlinear Dyn, 2008, 54: 365–377

    Article  MATH  Google Scholar 

  24. Cameron T M, Griffin J H. An alternating frequency/time domain method for calculating the steady state response of nonlinear dynamic systems. J Appl Mech ASME, 1989, 56: 149–154

    Article  MATH  MathSciNet  Google Scholar 

  25. Kim Y B, Noah S T. Stability and bifurcation analysis of oscillators with piecewise-linear characteristics: A general approach. J Appl Mech ASME, 1991, 58: 545–553

    Article  MATH  MathSciNet  Google Scholar 

  26. Groll G V, Ewins D J. The harmonic balance method with arc-length continuation in rotor/stator contact problems. J Sound Vib, 2001, 241: 223–233

    Article  Google Scholar 

  27. Zhang Z Y, Chen Y S. Harmonic balance method with alternating frequency/time domain technique for nonlinear dynamical system with fractional exponential. Appl Math Mech-Engl, 2014, 35: 423–436

    Article  Google Scholar 

  28. Gupta T C, Gupta K, Sehgal D K. Instability and chaos of a flexible rotor ball bearing system: An investigation on the influence of rotating imbalance and bearing clearance. J Eng Gas Turbines Power ASME, 2011, 133: 082501

    Article  Google Scholar 

  29. Liew A, Feng N, Hahn E J. Transient rotordynamic modeling of rolling element bearing systems. J Eng Gas Turbines Power ASME, 2002, 124: 984–991

    Article  Google Scholar 

  30. Seydel R. Practical Bifurcation and Stability Analysis. New York: Springer, 2010

    Book  MATH  Google Scholar 

  31. Huang X D, Zeng Z G, Ma Y N. The Theory and Methods for Nonlinear Numerical Analysis (in Chinese). Wuhan: Wuhan University Press, 2004

    Google Scholar 

  32. Hsu C S. Impulsive parametric excitation: Theory. J Appl Mech ASME, 1972, 39: 551–558

    Article  MATH  Google Scholar 

  33. Nayfeh A H, Balachandran B. Applied Nonlinear Dynamics. Weinheim: WILEYVCH, Verlag GmbH & Co. KGaA, 2004

    Google Scholar 

  34. Thompson J M T, Stewart H B. Nonlinear Dynamics and Chaos. 2nd ed. New York: John Wiley & Sons, 2001

    Google Scholar 

  35. Parker T S, Chua L O. Practical Numerical Algorithms for Chaotic Systems. New York: Springer-Verlag, 1989

    Book  MATH  Google Scholar 

  36. Schmelcher P, Diakonos F K. General approach to the localization of unstable periodic orbits in chaotic dynamical systems. Phys Rev E, 1998, 57: 2739–2746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, Y. & Li, Z. Influencing factors of the dynamic hysteresis in varying compliance vibrations of a ball bearing. Sci. China Technol. Sci. 58, 775–782 (2015). https://doi.org/10.1007/s11431-015-5808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5808-1

Keywords

Navigation