Skip to main content
Log in

A numerical study of counterflow diffusion flames of methane/air at various pressures

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures, which have very important applications in the air-breathing rocket and advanced gas turbine engines, is conducted to obtain fundamental understanding of the flame characteristics. The analysis is based on a general mathematical formulation and accommodates a unified treatment of general fluids thermodynamics and accurate calculations of thermophysical properties. Results reveal that the maximum flame temperature occurs on the fuel-rich side for low-pressure conditions and shifts toward the stoichiometric position when the pressure increases. The maximum flame temperature increases with an increasing pressure, but decreases with an increasing strain rate. The flame width is inversely proportional to the square root of the product of the pressure and strain rate as \({{\delta \propto 1} \mathord{\left/ {\vphantom {{\delta \propto 1} {\sqrt {p \cdot a} }}} \right. \kern-\nulldelimiterspace} {\sqrt {p \cdot a} }}\). The total heat release rate varies with the pressure and strain rate in a relationship of (Q release √(p·a)0.518. An increased pressure leads to a slightly more complete combustion process near the stoichiometric position, but its effect on NO production is minor. Under the test conditions, variations of the strain rate have significant impacts on the formation of major pollutants. An increased strain rate leads to the decreased mole fraction of CO in the fuel-rich region and significantly reduced NO near the stoichiometric position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang V. Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems. P Combust Inst, 2000, 28: 925–942

    Article  Google Scholar 

  2. Singla G, Scouflaire P, Rolon C, et al. Transcritical oxygen/transcritical or supercritical methane combustion. P Combust Inst, 2005, 30: 2921–2928

    Article  Google Scholar 

  3. Habiballah M, Oran M, Grisch F, et al. Experimental studies of high-pressure cryogenic flames on the mascotte facility. Combust Sci Technol, 2006, 178: 101–128

    Article  Google Scholar 

  4. Candel S, Juniper M, Singla G, et al. Structure and dynamics of cryogenic flames at supercritical pressure. Combust Sci Technol, 2006, 178: 161–192

    Article  Google Scholar 

  5. Chehroudi B, Talley D, Coy E. Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures. Phys Fluids, 2002, 14: 850–861

    Article  Google Scholar 

  6. Segal C, Polikhov S A. Subcritical to supercritical mixing. Phys Fluids, 2008, 20: 052101

    Article  Google Scholar 

  7. Yin Y M, Lu X Y. Effects of injection temperature on the jet evolution under supercritical conditions. Chin Sci Bull, 2009, 54: 4197–4204

    Article  Google Scholar 

  8. Heo J Y, Kim K J, Sung H G, et al. Numerical study on kerosene/LOx supercritical mixing characteristics of a Swirl Injector. AIAA 2012-1266, 2012

    Google Scholar 

  9. Kee R J, Miller J A, Evans G H, et al. A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames. In: the Twenty-second Symposium (International) on Combustion, 1989, 22: 1479–1494

    Article  Google Scholar 

  10. Sung C J, Liu J B, Law C K. Structure response of counterflow diffusion flames to strain rate variations. Combust Flame, 1995, 102: 481–492

    Article  Google Scholar 

  11. Liu S, Hewson J C, Chen J H, et al. Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow. Combust Flame, 2004, 137: 320–339

    Article  Google Scholar 

  12. Sun W T, Uddi M, Ombrello T, et al. Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction. P Combust Inst, 2011, 33: 3211–3218

    Article  Google Scholar 

  13. Zhang H Q, Yang F, Wang X L. The effects of soret diffusion on extinction limit in premixed and diffusion counterflow n-butane/air flames. Combust Sci Technol, 2012, 184: 517–532

    Article  Google Scholar 

  14. Ribert G, Zong N, Yang V, et al. Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures. Combust Flame, 2008, 154: 319–330

    Article  Google Scholar 

  15. Meng H, Yang V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme. J Comput Phys, 2003, 189: 277–304

    Article  MATH  Google Scholar 

  16. Meng H, Hsiao G C, Yang V, et al. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams. J Fluid Mech, 2005, 527: 115–139

    Article  MATH  Google Scholar 

  17. Pons L, Darabiha N, Candel S, et al. Mass transfer and combustion in transcritical non-premixed counterflows. Combust Theor Model, 2009, 13: 57–81

    Article  MATH  Google Scholar 

  18. Wang X, Huo H, Yang V. Supercritical combustion of general fluids in laminar counterflows. AIAA 2013-1165, 2013

    Google Scholar 

  19. Kim T, Kim Y, Kim S. Numerical analysis of gaseous hydrogen/liquid oxygen flamelet at supercritical pressures. Int J Hydrogen Energ, 2011, 36: 6303–6316

    Article  Google Scholar 

  20. Peters N. Laminar flamelet concepts in turbulent combustion. P Combust Inst, 1988, 21: 1234–1250

    Google Scholar 

  21. Zong N, Yang V. Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions. P Combust Inst, 2007, 31: 2309–2317

    Article  Google Scholar 

  22. Cutrone L, De Palma P, Pascazio G, et al. A RANS flamelet-progress-variable method for computing reacting flows of real-gas mixtures. Comput Fluids, 2010, 39: 485–498

    Article  MATH  Google Scholar 

  23. Kim T, Kim Y, Kim S. Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure. J Supercrit Fluid, 2011, 58: 254–262

    Article  Google Scholar 

  24. Huo H, Yang V. Supercritical LOX/methane combustion of a shear coaxial injector. AIAA 2011-326, 2011

    Google Scholar 

  25. Reid R C, Prausnitz J M, Poling B E. The Properties of Gases and Liquids. New York: McGraw-Hill, 1987

    Google Scholar 

  26. Yang V, Lin N N, Shuen J S. Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen environments. Combust Sci Technol, 1994, 97: 247–270

    Article  Google Scholar 

  27. Meng H, Yang V. Clustering effects on liquid oxygen (LOX) droplet vaporization in hydrogen environments at subcritical and supercritical pressures. Int J Hydrogen Energ, 2012, 37: 11815–11823

    Article  Google Scholar 

  28. Meng H, Yang V. Vaporization of two liquid oxygen (LOX) droplets in tandem in convective hydrogen streams at supercritical pressures. Int J Heat Mass Tran, 2014, 68: 500–508

    Article  Google Scholar 

  29. Wang Y Z, Hua Y X, Meng H. Numerical study of supercritical turbulent convective heat transfer of cryogenic-propellant methane. J Thermophys Heat Tran, 2010, 24: 490–500

    Article  Google Scholar 

  30. Wang L, Chen Z, Meng H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures. Appl Therm Eng, 2013, 54: 237–246

    Article  Google Scholar 

  31. Kee R J, Rupley F M, Miller J A. Chemkin III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories Report SAND96-8216, 1996

    Google Scholar 

  32. Lutz A E, Kee R J, Grcar J F, et al. OPPDIF: A FORTRAN program for computing opposed-flow diffusion flames. Sandia National Laboratories Report SAND96-8243, 1996

    Google Scholar 

  33. Smith G P, Golden D M, Frenklach M, et al. GRI-MEch. http://www.me.berkeley.edu/gri_mech/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Meng, H. A numerical study of counterflow diffusion flames of methane/air at various pressures. Sci. China Technol. Sci. 57, 615–624 (2014). https://doi.org/10.1007/s11431-014-5484-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5484-6

Keywords

Navigation