Skip to main content
Log in

High resolution full-spectrum water Raman lidar

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Knowledge of the temporal-spatial distribution of water content in atmosphere and water phase change in cloud is important for atmospheric study. For this purpose, we have developed a high resolution full-spectrum water Raman lidar that can collect Raman signals from ice, water droplets and water vapor simultaneously. A double-grating polychromator and a 32-channel photomultiplier-tube detector are used to obtain a spectral resolution of ∼0.19 nm in the full Raman spectrum range of water. Preliminary observations present the water Raman spectrum characteristics of both the mixed-phase cloud and humid air under cloudless condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cooney J A. Remote measurements of atmospheric water vapor profiles using the Raman component of laser backscatter. J Appl Meteorol, 1970, 9: 182–184

    Article  Google Scholar 

  2. Melfi S H, Whiteman D N. Observation of lower atmospheric moisture structure and its evolution using a Raman lidar. Bull Am Meteorol Soc, 1985, 66: 1288–1292

    Article  Google Scholar 

  3. Whiteman D N, Melfi S H, Ferrare R A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl Opt, 1992, 31: 3068–3082

    Article  Google Scholar 

  4. Ansmann A, Riebesell M, Wandinger U, et al. Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl Phys B, 1992, 55: 18–28

    Article  Google Scholar 

  5. Goldsmith J E M, Bisson S E, Ferrare R A, et al. Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems. Bull Am Meteorol Soc, 1994, 75: 975–982

    Article  Google Scholar 

  6. Melfi S H, Evans K D, Li J, et al. Observation of Raman scattering by cloud droplets in the atmosphere. Appl Opt, 1997, 36(15): 3551–3559

    Article  Google Scholar 

  7. Whiteman D N, Melfi S H. Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J Geophys Res, 1999, 104(D24): 31411–31419

    Article  Google Scholar 

  8. Veselovskii I A, Cha H K, Kim D H, et al. Raman lidar for the study of liquid water and water vapor in the troposphere. Appl Phys B, 2000, 71: 113–117

    Article  Google Scholar 

  9. Veselovskii I A, Cha H K, Kim D H, et al. Study of atmospheric water in gaseous and liquid state by using combined elastic-Raman depolarization lidar. Appl Phys B, 2001, 73: 739–744

    Article  Google Scholar 

  10. Wang Z, Whiteman D N, Demoz B B. A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar. Geophys Res Lett, 2004, 31: L15101

    Article  Google Scholar 

  11. Vincenzo R, Iarlori M, Rocci G, et al. Raman lidar observations of cloud liquid water. Appl Opt, 2004, 43(35): 6440–6453

    Article  Google Scholar 

  12. Arshinov F, Bobrovnikov S M, Nadeev A I, et al. Lidar remote sensing in atmospheric and Earth sciences. 21st International Laser Radar Conference, QC, Canada, 2002

  13. Kim D, Baik S, Kim Y, et al. Lidar Measurement of a Full Raman Spectrum of Water by Using a Multichannel Detector. J Korea Phys Soc, 2009, 54: 38–43

    Article  Google Scholar 

  14. Scherer J R, Go M K, Kint S. Raman spectra and structure of water from −10 to 90. J Phys Chem, 1974, 78: 1304–1313

    Article  Google Scholar 

  15. D’Arrigo G, Maisano G, Mallamace F, et al. Raman scattering and structure of normal and super-cooled water. J Chem Phys, 1981, 75: 4264–4270

    Article  Google Scholar 

  16. Walrafen G E, Hokmabadi M S, Yang W H. Raman isosbestic points from liquid water. J Chem Phys, 1986, 85: 6964–6969

    Article  Google Scholar 

  17. Walrafen G E, Fisher M R, Hokmabadi M S, et al. Temperature dependence of the low- and high-frequency Raman scattering from liquid water. J Chem Phys, 1986, 85: 6970–6981

    Article  Google Scholar 

  18. Dolenko T A, Churina I V, Fadeev V V, et al. Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media. J Raman Spectrosc, 2000, 31: 863–870

    Article  Google Scholar 

  19. Garciaa C S, Abedinb M N, Sharmac S K, et al. Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals. Proc of SPIE, 2006, 6302: 630215, doi: 10.1117/12.680879

    Article  Google Scholar 

  20. Avila G, Ferna’ndez J M, Mate B, et al. Ro-vibrational Raman cross sections of water vapor in the OH stretching region. J Mo Spectrosc, 1999, 196: 77–92

    Article  Google Scholar 

  21. Kim D, Song I, Cheong H D, et al. Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis. Opt Rev, 2010, 17(2): 84–89

    Article  Google Scholar 

  22. Liu B. Detection of the atmosphere over Wuhan with a Fe fluorescence lidar (in Chinese). Doctoral Dissertation. Wuhan: Wuhan University, 2005

    Google Scholar 

  23. Wandinger U. Raman lidar. in: Weitkamp C, ed. Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, Chap 9. New York: Springer, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Yi, F., Jia, J. et al. High resolution full-spectrum water Raman lidar. Sci. China Technol. Sci. 55, 1224–1229 (2012). https://doi.org/10.1007/s11431-012-4778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4778-9

Keywords

Navigation