Skip to main content
Log in

Nano- and microphytoplankton community characteristics in brown tide bloom-prone waters of the Qinhuangdao coast, Bohai Sea, China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Since 2009, the newly recorded species Aureococcus anophagefferens has successively induced brown tides in the Qinhuangdao coastal waters of the Bohai Sea. Here, we focus on the phytoplankton community structure in this region and try to point out the biological background characteristics of the outbreaks of successive brown tides. We analyzed species composition, cell abundance, diversity indices and size-fractionated chlorophyll a (Chl-a) concentration monthly from March 2013 to January 2014. The phytoplankton community, as observed by microscopy, underwent succession from nano-celled chained diatoms to dinoflagellates in the spring and summer, and then to micro-celled diatoms and nano-celled chained diatoms as the most prominent groups in the subsequent autumn and winter. Canonical correspondence analysis revealed that changes in the abundance of diatoms were related to nutrient availability, especially of nitrogen, while water temperature was the crucial factor influencing the abundance of dinoflagellates and A. anophagefferens. Considering the contribution of nano-celled chained species to the micro-sized Chl-a, small phytoplankton (<20 μm) composed the majority of total Chl-a and were generally abundant during our study. Abundant and diverse small phytoplankton seemed to serve as a background or seedbank for the formation of blooms of A. anophagefferens and other small-celled algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley T R. 1982. Competition theory, evolution, and the concept of an ecological niche. Acta Biotheor, 31: 165–179

    Article  Google Scholar 

  • Andersson A, Haecky P, Hagström Å. 1994. Effect of temperature and light on the growth of micro- nano- and pico-plankton: Impact on algal succession. Mar Biol, 120: 511–520

    Article  Google Scholar 

  • Baek S H, Shimode S, Han M S, Kikuchi T. 2008. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: The role of nutrients. Harmful Algae, 7: 729–739

    Article  Google Scholar 

  • Cao X H, Yu Z M, Wu Z X, Cheng F J, He L Y, Yuan Y Q, Song X X, Zhang J L, Zhang Y F, Zhang W L. 2017. Environmental characteristics of annual pico/nanophytoplankton blooms along the Qinhuangdao coast. Chin J Ocean Limnol, 9, doi: 10.1007/s00343-017-5216-4

    Google Scholar 

  • Cosper E M, Dennison W, Milligan A, Carpenter E J, Lee C, Holzapfel J, Milanese L. 1989. An examination of the environmental factors important to initiating and sustaining “brown tide” blooms. In: Cosper E M, Bricelj V M, Carpenter E J, eds. Novel Phytoplankton Blooms: Causes and Impacts of Pecurrent Brown Tides and Other Unusual Blooms. New York: Springer. 317–340

    Google Scholar 

  • Egge J K. 1998. Are diatoms poor competitors at low phosphate concentrations? J Mar Syst, 16: 191–198

    Article  Google Scholar 

  • Eppley R W, Rogers J N, McCarthy J J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr, 14: 912–920

    Article  Google Scholar 

  • Estrada M, Berdalet E. 1997. Phytoplankton in a turbulent world. Sci Mar, 61: 125–140

    Google Scholar 

  • GB/T 12763.4. 2007. Specifications for Oceanographic Survey-Part 4: Survey of Chemical Parameters in Sea Water (in Chinese)

    Google Scholar 

  • GB/T 12763.6. 2007. Specifications for Oceanographic Survey-Part 6: Marine Biological Survey (in Chinese)

    Google Scholar 

  • Gobler C J, Berry D L, Dyhrman S T, Wilhelm S W, Salamov A, Lobanov A V, Zhang Y, Collier J L, Wurch L L, Kustka A B, Dill B D, Shah M, VerBerkmoes N C, Kuo A, Terry A, Pangilinan J, Lindquist E A, Lucas S, Paulsen I T, Hattenrath-Lehmann T K, Talmage S C, Walker E A, Koch F, Burson A M, Marcoval M A, Tang Y Z, Lecleir G R, Coyne K J, Berg G M, Bertrand E M, Saito M A, Gladyshev V N, Grigoriev I V. 2011. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA, 108: 4352–4357

    Article  Google Scholar 

  • Gobler C J, Lonsdale D J, Boyer G L. 2005. A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et sieburth). Estuaries, 28: 726–749

    Article  Google Scholar 

  • Gobler C J, Sunda W G. 2012. Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae, 14: 36–45

    Article  Google Scholar 

  • Guo H, Wang J G, Yi X L, Zhao W, Feng Z Q, Guan D M, Zou J Z, Wen Q, Qu D, Bian Z H. 2004. Illustrations of Planktons Responsible for the Blooms in Chinese Coastal Waters (in Chinese). Beijing: Ocean Press

    Google Scholar 

  • Hansen P J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J Eukaryot Microbiol, 58: 203–214

    Article  Google Scholar 

  • Jørgensen E G. 1955. Solubility of the silica in diatoms. Physiol Plant, 8: 846–851

    Article  Google Scholar 

  • Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pfl, 167: 191–194

    Article  Google Scholar 

  • KarpBoss L, Boss E, Jumars P A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol, 34: 71–107

    Google Scholar 

  • Kido K, Nishimura M. 1975. Silica in the sea—Its forms and dissolution rate. Deep Sea Res Oceanogr Abstracts, 22: 323–338

    Article  Google Scholar 

  • Kirkwood D S, Aminot A, Carlberg S R. 1996. The 1994 QUASIMEME laboratory performance study: Nutrients in seawater and standard solutions. Mar Pollut Bull, 32: 640–645

    Article  Google Scholar 

  • Kong F Z, Yu R C, Xu Z J, Zhou M J. 2012a. Application of excel in calculation of biodiversity indices (in Chinese). Mar Sci, 36: 57–62

    Google Scholar 

  • Kong F Z, Yu R C, Zhang Q C, Yan T, Zhou M J. 2012b. Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China. Chin J Ocean Limnol, 30: 361–370

    Article  Google Scholar 

  • Lewin J C. 1961. The dissolution of silica from diatom walls. Geochim Cosmochim Acta, 21: 182–198

    Article  Google Scholar 

  • Li Q H, Chen L L, Chen F F, Gao T J, Li X F, Liu S P, Li C X. 2013. Maixi River estuary to the Baihua Reservoir in the Maotiao River catchment: Phytoplankton community and environmental factors. Chin J Ocean Limnol, 31: 290–299

    Article  Google Scholar 

  • Li Z W, Cui L T. 2012. Contaminative conditions of main rivers flowing into the sea and their effect on seashore of Qinhuangdao (in Chinese). Ecol Environ Sci, 21: 1285–1288

    Google Scholar 

  • Liang X L, Yang Y, Wang Y L, Zhang Y M, Zhao Z N, Han X Q, Zhang J D, Gao W M. 2015a. Yearly changes of phytoplankton community in the ecology-monitoring area of Changli, Heibei in summer (in Chinese). Environ Sci, 36: 1317–1325

    Google Scholar 

  • Liang X L, Zhao Z N, Zhang Y M, Han X Q, Zhang J D, Gao W M. 2015b. Phytoplankton community structure in an ecology-monitoring area in Changli in summer of 2013 (in Chinese). Fisheries Sci, 34: 89–94

    Google Scholar 

  • Margalef R. 1958. Information theory in ecology. Gen Syst, 3: 36–71

    Google Scholar 

  • Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta, 1: 493–509

    Google Scholar 

  • McNaughton S J. 1967. Relationships among functional properties of Californian grassland. Nature, 216: 168–169

    Article  Google Scholar 

  • Mu J D, Zheng X R, Zhao Z L, Fu Z, Wu X M, Xi Y J, Zhao C L. 2015. Ecological characteristics of phytoplankton in Qinhuangdao coastal areas during the red-tide period (in Chinese). J Fishery Sci China, 22: 288–301

    Google Scholar 

  • Mulholland M R, Gobler C J, Lee C. 2002. Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnol Oceanogr, 47: 1094–1108

    Article  Google Scholar 

  • Nogueira M G. 2000. Phytoplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), Sao Paulo, Brazil. Hydrobiologia, 431: 115–128

    Article  Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É. 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The assemblage index. Hydrobiologia, 553: 1–14

    Article  Google Scholar 

  • Pielou E C. 1969. An Introduction to Mathematical Ecology. New York: Wiley Interscience. 286

    Google Scholar 

  • Probyn T A, Waldron H N, James A G. 1990. Size-fractionated measurements of nitrogen uptake in aged upwelled waters: Implications for pelagic food webs. Limnol Oceanogr, 35: 202–210

    Article  Google Scholar 

  • Raven J. 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li W K W, eds. Photosynthetic Picoplankton. Can Bull Fish Aquat Sci, 214: 1–70

    Google Scholar 

  • Redfield A C. 1963. The influence of organisms on the composition of sea water. Sea, 40: 26–77

    Google Scholar 

  • Rose J M, Caron D A. 2007. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr, 52: 886–895

    Article  Google Scholar 

  • Sanders R, Purdie D A. 1998. Bacterial response to blooms dominated by diatoms and Emiliania huxleyi in nutrient-enriched mesocosms. Estuar Coast Shelf Sci, 46: 35–48

    Article  Google Scholar 

  • Shannon C E, Weaver W. 1949. The Mathematical Theory of Communication. Urbana: University of Illinois Press. 117

    Google Scholar 

  • Sieracki M E, Gobler C J, Cucci T L, Thier E C, Gilg I C, Keller M D. 2004. Pico- and nanoplankton dynamics during bloom initiation of Aureococcus in a Long Island, NY bay. Harmful Algae, 3: 459–470

    Article  Google Scholar 

  • Smayda T J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr, 42: 1137–1153

    Article  Google Scholar 

  • Stauffer B A, Schaffner R A, Wazniak C, Caron D A. 2008. Immunofluorescence flow cytometry technique for enumeration of the brown-tide alga, Aureococcus anophagefferens. Appl Environ Microb, 74: 6931–6940

    Article  Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M. 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci, 71: 580–592

    Article  Google Scholar 

  • Sun J, Liu D Y, Feng S Z. 2002a. Preliminary study on marine phytoplankton sampling and analysis strategy for ecosystem dynamic research in coastal waters (in Chinese). Oceanol Limnol Sin, 34: 224–232

    Google Scholar 

  • Sun J, Liu D Y, Qian S B. 2002b. A quantative research and analysis method for marine phytoplankton: An introduction to Utermöhl method and its modification (in Chinese). J Oceanogr Huanghai-Bohai Seas, 20: 105–112

    Google Scholar 

  • Ter Braak C J, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination Version 4.5

    Google Scholar 

  • Thingstad T F, Havskum H, Garde K, Riemann B. 1996. On the strategy of “eating your competitor”: A mathematical analysis of algal mixotrophy. Ecology, 77: 2108–2118

    Article  Google Scholar 

  • Tomas C R. 1997. Identifying Marine Phytoplankton. New York: Academic Press

    Google Scholar 

  • Utermöhl H. 1958. Zur vervollkommnung der quantitativen phytoplanktonmethodik. Mitt Int Ver Theor Angew Limnol, 9: 1–38

    Google Scholar 

  • Wang D, He E Y, Liu G M, Liu Q Z. 2013. Relationship between red tide organisms and environmental factors in the Beidaihe waters of the Qinhuangdao (in Chinese). Mar Forecasts, 30: 1–7

    Google Scholar 

  • Yamaji I. 1984. Illustrations of the Marine Plankton of Japan (in Japanese). Osaka: Hoikusha Publishing Co., Ltd

    Google Scholar 

  • Zhang J L, Chen H. 2010. Species composition and quantity variation of phytoplanktons from aquaculture ground in the coastal waters of Beidaihe (in Chinese). Mar Sci Bull, 29: 407–411

    Google Scholar 

  • Zhang Q C, Qiu L M, Yu R C, Kong F Z, Wang Y F, Yan T, Gobler C J, Zhou M J. 2012. Emergence of brown tides caused by Aureococcusanophagefferens Hargraves et Sieburth in China. Harmful Algae, 19: 117–124

    Article  Google Scholar 

  • Zhang W L, Zhang Y F, Zhang J L, Zhao S L. 2012. Environment quality analysis of red tide monitoring area in Beidaihe (in Chinese). Hebei Fishery. 13–16

    Google Scholar 

  • Zhang Y, Zhang Y F, Zhang W L, Zhang J L, Duan J H, Li L, Lu S H. 2012. Size fraction of chlorophyll a during and after brown tide in Qinhuangdao coastal waters (in Chinese). Ecol Sci, 31: 357–363

    Google Scholar 

  • Zhang Y F, Li X Y, Zhang W L, Zhang J L. 2013. Spatial and temporal distribution of silicate and chlorophyll a in the coastal waters with picophytoplankton algal bloom (in Chinese). Ecol Sci, 32: 509–513

    Google Scholar 

  • Zhao Y F. 2011. The variational characteristics of rainfall in Qinhuangdao (in Chinese). Ground Water, 33: 137–138

    Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the sampling assistance provided by our colleagues on Cruise QYY66666. This work was supported by the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers (Grant No. U1606404), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA11020601), and the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201305003-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiMing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yu, Z., He, L. et al. Nano- and microphytoplankton community characteristics in brown tide bloom-prone waters of the Qinhuangdao coast, Bohai Sea, China. Sci. China Earth Sci. 60, 1189–1200 (2017). https://doi.org/10.1007/s11430-017-9036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9036-0

Keywords

Navigation