Skip to main content
Log in

Depositional chemistry of chert during late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Continual deep-water sediments from the late Early Devonian to the Late Permian extended in wide areas of western Guangxi. We analyzed the major, trace, and rare earth elements of the Upper Paleozoic cherts in Badu, western Guangxi. High non-terrigenous SiO2 contents (Sinon-ter/Sibulk(%)> 80%) and pure chert components (> 70%) indicate a large extent of silicification in the Upper Paleozoic cherts, except for the Upper Devonian-Lower Carboniferous Luzhai Formation cherts, which have lower non-terrigenous SiO2 contents (avg. 71.8%) and pure chert components (40%–70%). The Al/(Al+Fe+Mn) ratios and Feter/Febulk(%) values of samples from the lowest horizon of the Pingen Formation are 0.05–0.26, 13.1%–14.5%, respectively, indicating hydrothermal origins. All other samples show high Al/(Al+Fe+Mn) ratios (0.39–0.81) and high Feter/Febulk(%) values (23.1%–186.8%), indicating non-hydrothermal origins. The Pingen Formation and Liujiang Formation cherts show slightly-moderately negative Ce anomalies (0.71±0.07, 0.81±0.08, respectively) and higher Y/Ho ratios (33.49±1.27, 36.10±2.05, respectively) than PAAS. This suggests that these cherts were deposited in the open marine basin, rather than in the intracontinental rift basin as previously assumed. The Luzhai Formation cherts may be deposited near the seamount or seafloor plateaus with no negative Ce anomalies (1.09±0.07) and no significant Y-Ho fractionation (Y/Ho=28.60±1.25). The Nandan Formation and Sidazhai Formation cherts were deposited in the open-ocean basin with moderately negative Ce anomalies (0.67±0.08, 0.73±0.11, respectively) and high Y/Ho ratios (36.01±1.00, 32.00±2.25, respectively). On the basis of our studies about cherts, we conclude that the Youjiang Basin originated as part of the Paleo-Tethys that controlled the depositional environments of cherts during late Paleozoic. The rift of the Youjiang Basin had occurred at least since the Early-Middle Devonian. The basin had a trend of evolving into an open-ocean basin during the Early-Middle Permian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du Y S, Huang H W, Huang Z Q, et al. Basin translation from Late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance (in Chinese). Geol Sci Tech Inform, 2009, 28: 10–15

    Google Scholar 

  2. Liu B J, Xu X S, Pan X N, et al. Paleocontinental Sedimentary Crustal Evolution and Mineralization in South China (in Chinese). Beijing: Science Press, 1993. 42–46

    Google Scholar 

  3. Chen H D, Zeng Y F. Nature and evolution of the Youjiang Basin (in Chinese). Sedi Fac Paleogeogr, 1990, 10: 28–37

    Google Scholar 

  4. Zeng Y F, Liu W J, Chen H D, et al. Evolution of sedimentation and tectonics of the Youjiang composite basin, South China (in Chinese). Acta Geol Sin, 1995, 69: 113–124

    Google Scholar 

  5. Qin J H, Wu Y L, Yan Y J, et al. Hercynian-Indosinian sedimentary-tectonic evolution of the Nanpanjiang basin (in Chinese). Acta Geol Sin, 1996, 70: 99–107

    Google Scholar 

  6. Yin H F, Wu S B, Du Y S, et al. South China defined as part of Tethyan archipelagic ocean system (in Chinese). Earth Sci-J China Univ Geosci, 1999, 24: 1–11

    Google Scholar 

  7. Zhong D L, Wu G Y, Ji J Q, et al. Discovery of ophiolite in southeast Yunnan, China. Chin Sci Bull, 1999, 44: 36–41

    Article  Google Scholar 

  8. Wu H R, Kuang G D, Wang Z C. Preliminary study of Late Paleozoic tectonic sedimentary settings in Guangxi (in Chinese). Sci Geol Sin, 1997, 32: 11–18

    Google Scholar 

  9. Wang Z C, Wu H R, Kuang G D. Characteristics of the Late Paleozoic oceanic basalts and their eruptive environments in west Guangxi (in Chinese). Acta Petrol Sin, 1997, 13: 260–265

    Google Scholar 

  10. Wu G Y, Wu H R, Zhong D L, et al. Volcanic rocks of paleotethyan oceanic island and island-arc bordering Yunnan and Guangxi, China (in Chinese). Geoscience, 2000, 14: 393–400

    Google Scholar 

  11. Wu H R. Discussion on tectonic palaeogeography of Nanpanjiang sea in the Late Palaeozoic and Triassic (in Chinese). J Palaeogeogr, 2003, 5: 63–76

    Google Scholar 

  12. Kato Y, Nakamura K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res, 2003, 125: 191–243

    Article  Google Scholar 

  13. Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to finegrained marine sediments. Geochim Cosmochim Acta, 1991, 55: 1875–1895

    Article  Google Scholar 

  14. Murray R W, Buchholtz Ten Brink M R, Jones D L, et al. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology, 1990, 18: 268–271

    Article  Google Scholar 

  15. Chen H D, Zeng Y F. Depositional characteristics and genesis of Upper Devonian silicalites in Danchi basin, Guangxi (in Chinese). J Mineral Petrol, 1989, 9: 22–29

    Google Scholar 

  16. Chen X P, Chen D F. Geochemistry of Upper Devonian mammiform chert in Guangxi (in Chinese). Geochimica, 1989, 18: 1–8

    Google Scholar 

  17. Zhou Y Z. On sedimentary geochemistry of siliceous rocks originated from thermal water in Nandan-Hechi basin (in Chinese). Acta Sediment Sin, 1990, 8: 75–83

    Google Scholar 

  18. Wang Z Z, Chen D Z, Wang J G. Element geochemistry and depositional setting of the chert in Devonian, Nanning area, Guangxi (in Chinese). Acta Sediment Sin, 2007, 25: 239–245

    Google Scholar 

  19. Wang Z C, Wu H R, Kuang G D. Geochemistry and origin of Late Paleozoic cherts in Guangxi and their explanation of tectonic environments (in Chinese). Acta Petrol Sin, 1995, 11: 449–455

    Google Scholar 

  20. Deng X G, Li X H, Chen Z G. Geochemical features and sedimentary setting of Late Devonian cherts in Bancheng of Qinzhou, Guangxi (in Chinese). Sci Geol Sin, 2003, 38: 460–469

    Google Scholar 

  21. Zhang N, Xia W C, Shao J. Radiolarian successional sequences and rare earth element variations in Late Paleozoic chert sequences of South China: An integrated approach for study of the evolution of Paleo-Ocean basins. Geomicrobiol J, 2002, 19: 439–460

    Article  Google Scholar 

  22. Kuang G D, Wu H R. Late Paleozoic strata of deep-water facies in western Guangxi (in Chinese). Sci Geol Sin, 2002, 37: 152–164

    Google Scholar 

  23. Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol, 2008, 247: 133–153

    Article  Google Scholar 

  24. Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res, 1996, 79: 37–55

    Article  Google Scholar 

  25. Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change. Chem Geol, 2002, 182: 15–34

    Article  Google Scholar 

  26. McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B R, McKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements. Rev Mineral, 1989, 21: 169–200

  27. Murray R W. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sediment Geol, 1994, 90: 213–232

    Article  Google Scholar 

  28. Yu B S, Dong H L, Widom E, et al. Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. J Asian Earth Sci, 2009, 34: 418–436

    Article  Google Scholar 

  29. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985. 9–56

  30. Takebe M, Yamamoto K. Geochemical fractionation between porcellanite and host sediment. J Geol, 2003, 111: 301–312

    Article  Google Scholar 

  31. Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 1993, 104: 1–37

    Article  Google Scholar 

  32. Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta, 1984, 48: 2469–2482

    Article  Google Scholar 

  33. Qiu Z, Wang Q C. Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region (in Chinese). Acta Petrol Sin, 2010, 26: 3612–3628

    Google Scholar 

  34. Shao J, Xia W C. The REE characteristics and depositional environment analysis of silicolites in Funing, Yunnan (in Chinese). Northwestern Geol, 2002, 35: 41–44

    Google Scholar 

  35. Mao X D, Duan Q F, Chen Z Y. REE geochemistry and sedimentary environment of Devonian cherts in Guangxi and Hunan (in Chinese). Acta Petrol Mineral, 1999, 18: 229–236

    Google Scholar 

  36. Wang Z Z, Chen D Z, Wang J G. REE geochemistry and depositional settings of the Devonian cherts in Nanning area, Guangxi (in Chinese). Sci Geol Sin, 2007, 42: 558–569

    Google Scholar 

  37. Chen D Z, Qing H R, Yan X, et al. Hydrothermal venting and basin evolution (Devonian, South China): Constraints from rare earth element geochemistry of chert. Sediment Geol, 2006, 183: 203–216

    Article  Google Scholar 

  38. Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze Platform, China: The Gufeng Formation-A continental shelf radiolarian chert. Sediment Geol, 2005, 174: 197–222

    Article  Google Scholar 

  39. Girty G H, Ridge D L, Knaack C, et al. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res, 1996, 66: 107–118

    Google Scholar 

  40. Maliva R G, Knoll A H, Simonson B M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol Soc Am Bull, 2005, 117: 835–845

    Article  Google Scholar 

  41. Treguer P, Nelson D M, Van Bennekom A J, et al. The silica balance in the world ocean: A reestimate. Science, 1995, 268: 375–379

    Article  Google Scholar 

  42. Hesse R. Origin of chert: Diagenesis of biogenic siliceous sediments. Geosci Can, 1988, 15: 171–192

    Google Scholar 

  43. Murray R W, Jones D L, Brink M R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet. Geology, 1992, 20: 271–274

    Article  Google Scholar 

  44. Bohrmann G, Abelmann A, Gersonde R, et al. Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 1994, 22: 207–210

    Article  Google Scholar 

  45. Kastner M, Keene J B, Gieskes J M. Diagenesis of siliceous oozes, I. Chemical controls on the rate of opal-A to opal-CT transformation: An experimental study. Geochim Cosmochim Acta, 1977, 41: 1041–1059

    Article  Google Scholar 

  46. Williams L A, Parks G A, Crerar D A. Silica diagenesis, I, Solubility controls. J Sediment Res, 1985, 55: 301–311

    Google Scholar 

  47. Yamamoto K. A possible mechanism of rhythmic alternation of bedded cherts revealed by their chemical composition. J Earth Planet Sci, Nagoya Univ, 1998, 45: 29–39

    Google Scholar 

  48. Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis. Geochim Cosmochim Acta, 1992, 56: 2657–2671

    Article  Google Scholar 

  49. Murray R W, Buchholtz Ten Brink M R, Gerlach D C, et al. Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record. Geochim Cosmochim Acta, 1992, 56: 1897–1913

    Article  Google Scholar 

  50. Brueckner H K, Snyder W S. Chemical and Sr-isotopic variations during diagenesis of Miocene siliceous sediments of the Monterey Formation, California. J Sediment Res, 1985, 55: 553–568

    Google Scholar 

  51. Bostrom K, Peterson M. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar Geol, 1969, 7: 427–447

    Article  Google Scholar 

  52. Adachi M, Yamamoto K, Sugisaki R. Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity. Sediment Geol, 1986, 47: 125–148

    Article  Google Scholar 

  53. Yamamoto K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sediment Geol, 1987, 52: 65–108

    Article  Google Scholar 

  54. Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater. Geochim Cosmochim Acta, 1989, 53: 757–762

    Article  Google Scholar 

  55. German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean. Nature, 1990, 345: 516–518

    Article  Google Scholar 

  56. German C R, Hergt J, Palmer M R, et al. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise. Chem Geol, 1999, 155: 65–75

    Article  Google Scholar 

  57. Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 1999, 63: 627–643

    Article  Google Scholar 

  58. Dias A S, Fruh-Green G L, Bernasconi S M, et al. Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar Geol, 2011, 279: 128–140

    Article  Google Scholar 

  59. Ding L, Zhong D L. Characteristics of rare earth elements and cerium anomalies in cherts from the Paleo-Tethys in Changning-Menglian belt in western Yunnan, China. Sci China Ser D-Earth Sci, 1996, 39: 35–45

    Google Scholar 

  60. Li X H. Geochemistry of the Late Paleozoic radiolarian cherts within the NE Jiangxi ophiolite mélange and its tectonic significance. Sci China Ser D-Earth Sci, 2000, 43: 617–624

    Article  Google Scholar 

  61. Liu Y G, Miah M, Schmitt R A. Cerium: A chemical tracer for paleo-oceanic redox conditions. Geochim Cosmochim Acta, 1988, 52: 1361–1371

    Article  Google Scholar 

  62. Holser W T. Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeograpr Palaeoclimatol Palaeoecol, 1997, 132: 309–323

    Article  Google Scholar 

  63. De Baar H J W, Bacon M P, Brewer P G, et al. Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta, 1985, 49: 1943–1959

    Article  Google Scholar 

  64. Bellanca A, Masetti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141–152

    Article  Google Scholar 

  65. Matsumoto R, Minai Y, Okamura M. Geochemistry and depositional environments of bedded chert of the Cretaceous Shimanto Group, Shikoku, southwest Japan. Modern Geol, 1988, 12: 197–224

    Google Scholar 

  66. Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Acta, 1994, 58: 1567–1579

    Article  Google Scholar 

  67. Thomson J, Carpenter M, Colley S, et al. Metal accumulation rates in northwest Atlantic pelagic sediments. Geochim Cosmochim Acta, 1984, 48: 1935–1948

    Article  Google Scholar 

  68. Hara H, Kurihara T, Kuroda J, et al. Geological and geochemical aspects of a Devonian siliceous succession in northern Thailand: Implications for the opening of the Paleo-Tethys. Palaeogeogr Palaeoclimatol Palaeoecol, 2010, 297: 452–464

    Article  Google Scholar 

  69. Condie K C. Another look at rare earth elements in shales. Geochim Cosmochim Acta, 1991, 55: 2527–2531

    Article  Google Scholar 

  70. Sholkovitz E R. Rare-earth elements in marine sediments and geochemical standards. Chem Geol, 1990, 88: 333–347

    Article  Google Scholar 

  71. Kamber B S, Greig A, Collerson K D. A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia. Geochim Cosmochim Acta, 2005, 69: 1041–1058

    Article  Google Scholar 

  72. Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta, 1996, 60: 1709–1725

    Article  Google Scholar 

  73. Jochum K P, Seufert H M, Spettel B, et al. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim Cosmochim Acta, 1986, 50: 1173–1183

    Article  Google Scholar 

  74. Tanaka K, Takahashi Y, Shimizu H. Local structure of Y and Ho in calcite and its relevance to Y fractionation from Ho in partitioning between calcite and aqueous solution. Chem Geol, 2008, 248: 104–113

    Article  Google Scholar 

  75. Zhang J, Amakawa H, Nozaki Y. The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific. Geophys Res Lett, 1994, 21: 2677–2680

    Article  Google Scholar 

  76. Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment. Earth Planet Sc Lett, 1997, 148: 329–340

    Article  Google Scholar 

  77. Lawrence M G, Greig A, Collerson K D, et al. Rare earth element and yttrium variability in South East Queensland waterways. Aquat Geochem, 2006, 12: 39–72

    Article  Google Scholar 

  78. Nozaki Y, Lerche D, Alibo D S, et al. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand. Geochim Cosmochim Acta, 2000, 64: 3983–3994

    Article  Google Scholar 

  79. Ohta A, Ishii S, Sakakibara M, et al. Systematic correlation of the Ce anomaly with the Co/(Ni+Cu) ratio and Y fractionation from Ho in distinct types of Pacific deep-sea nodules. Geochem J, 1999, 33: 399–417

    Article  Google Scholar 

  80. Chen H D, Qin J X, Tian J C, et al. Sequence filling dynamics of Youjiang Basin, Southern China (in Chinese). Acta Sediment Sin, 2000, 18: 165–171

    Google Scholar 

  81. Guo F, Fan W M, Wang Y J, et al. Upper Paleozoic basalts in the Southern Yangtze Block: Geochemical and Sr-Nd isotopic evidence for asthenosphere-lithosphere interaction and opening of the Paleo-Tethyan Ocean. Int Geol Rev, 2004, 46: 332–346

    Article  Google Scholar 

  82. Zhao J T, Xia L Q, Xia Z C, et al. Study on rare earth elements of continental rift silicalite in North Qilian Mountains (in Chinese). Chin Sci Bull, 1999, 44: 665–669

    Google Scholar 

  83. Wu G Y, Ma L, Zhong D L, et al. Indosinian Turkic-type orogen bordering Yunnan and Guangxi: With reference to coupled basin evolution (in Chinese). Petrol Geol Exp, 2001, 23: 8–18

    Google Scholar 

  84. Jian P, Liu D, Kröner A, et al. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): Insights from zircon ages of ophiolites, arc/back-arc assemblages and withinplate igneous rocks and generation of the Emeishan CFB province. Lithos, 2009, 113: 767–784

    Article  Google Scholar 

  85. Armstrong H A, Owen A W, Floyd J D. Rare earth geochemistry of Arenig cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, southern Scotland: Implications for origin and significance to the Caledonian Orogeny. J Geol Soc London, 1999, 156: 549

    Article  Google Scholar 

  86. Du Y S, Zhu J, Gu S Z, et al. Sedimentary geochemistry of the Cambrian-Ordovician cherts: Implication on archipelagic ocean of North Qilian orogenic belt. Sci China Ser D-Earth Sci, 2007, 50: 1628–1644

    Article  Google Scholar 

  87. Wu G Y, Ji J Q, He S D, et al. Early Permian magmatic arc in Pingxiang, Guangxi and its tectonic implications (in Chinese). J Mineral Petrol, 2002, 22: 61–65

    Google Scholar 

  88. Cai J X, Zhang K J. A new model for the Indochina and South China collision during the Late Permian to the Middle Triassic. Tectonophysics, 2009, 467: 35–43

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanSheng Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Du, Y., Huang, Z. et al. Depositional chemistry of chert during late Paleozoic from western Guangxi and its implication for the tectonic evolution of the Youjiang Basin. Sci. China Earth Sci. 56, 479–493 (2013). https://doi.org/10.1007/s11430-012-4496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-012-4496-y

Keywords

Navigation