, Volume 52, Issue 5, pp 669-680
Date: 08 May 2009

Patterns of shrub species richness and abundance in relation to environmental factors on the Alxa Plateau: Prerequisites for conserving shrub diversity in extreme arid desert regions

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The relationships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with species abundance, while pH was negatively correlated with it. These findings imply that it is vital for current shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau.

Supported by National Key Technology R & D Program (Grant Nos. 2007BAD46B03, 2006BAD26B0201) and National Natural Science Foundation of China (Gant No. 40825001)