Skip to main content
Log in

Neue Biomarker und Gene in der Prädiktion des Typ-2-Diabetes

New biomarkers and genes for prediction of type 2 diabetes

  • Leitthema
  • Published:
Der Diabetologe Aims and scope

Zusammenfassung

Hintergrund

Typ-2-Diabetes stellt eine multifaktorielle Erkrankung dar, die auf nichtgenetischen und genetischen Risikofaktoren beruht. Für Prädiktionsmodelle werden derzeit im Wesentlichen nichtgenetische Faktoren wie Patientenalter, Übergewicht/Adipositas oder Lebensstilfaktoren verwendet, was zu einer moderaten bis guten Vorhersage des persönlichen Diabetesrisikos führt.

Ziel der Arbeit

Es soll ein Update zu der Frage geliefert werden, inwiefern Genvarianten und Metaboliten als bislang am besten messbare Biomarker im Rahmen der neuen „omiks“-Technologien zur Verbesserung der Risikoprädiktion dienen können.

Ergebnisse

Seit 2008 hat sich aufgrund „Microarray“-basierter genomweiter Assoziationsstudien ein enormer Zuwachs an Informationen zur genetischen Architektur des Typ-2-Diabetes ergeben. Bislang erlauben diese neuen Erkenntnisse jedoch eher ein besseres Verständnis der Pathophysiologie, die zum Typ-2-Diabetes führt, während der prädiktive Wert der neuen genetischen Biomarker noch gering ist. In Metabolomikstudien werden hauptsächlich im Blut zirkulierende Metaboliten wie Aminosäuren und Lipide untersucht. Ihr prädiktiver Wert scheint höher zu sein als der von Genvarianten.

Schlussfolgerung

Weitere Studien, die die komplette Sequenzierung des menschlichen Genoms umfassen, werden in Zukunft helfen, die genetische Prädisposition für Typ-2-Diabetes besser zu erklären als bisher. Der nächste Schritt muss dann in der Integration der Daten aus omik-Studien (Genomik, Epigenomik, Transkriptomik, Proteomik, Metabolomik) bestehen, um neue pathogenetische Mechanismen zu charakterisieren und um Biomarkermuster zu identifizieren, die einen höheren prädiktiven Wert besitzen als die derzeit verfügbaren Genvarianten und Metaboliten.

Abstract

Background

Type 2 diabetes is a multifactorial disease caused by non-genetic and genetic risk factors. Current prediction models use mostly non-genetic factors, such as age, overweight, obesity and lifestyle factors, which result in a moderate or good prediction of the individual diabetes risk.

Aim

This review provides an update on the question to what extent gene variants and metabolites, which are currently the best measurable biomarkers under the new “omics” technologies, can be used to improve risk prediction.

Results

Since 2008 microarray-based genome-wide association studies have led to substantially deeper insights into the genetic architecture of type 2 diabetes. This knowledge has improved the understanding of the pathophysiology leading to type 2 diabetes, whereas the predictive value of the novel genetic biomarkers remains fairly low. Metabolomic studies analyze circulating metabolites, such as amino acids and lipids in blood. The predictive value of these metabolites seems to be higher than that of genetic variants.

Conclusion

Further large scale studies including whole-genome sequencing will help to obtain a better understanding of the genetic susceptibility for type 2 diabetes. Subsequently, data from different “omics” studies (i.e. genomics, epigenomics, transcriptomics, proteomics and metabolomics) need to be integrated to characterize novel pathogenetic mechanisms and to identify patterns of biomarkers which predict type 2 diabetes better than currently available gene variants and metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. International Diabetes Federation (2013) IDF Diabetes Atlas, 6. Aufl. International Diabetes Federation, Brussels

  2. Rathmann W, Scheidt-Nave C, Roden M et al (2013) Type 2 diabetes: prevalence and relevance of genetic and acquired factors for its prediction. Dtsch Arztebl Int 110:331–337

    PubMed  PubMed Central  Google Scholar 

  3. Schulze MB, Hoffmann K, Boeing H et al (2007) An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 30:510–515

    Article  PubMed  Google Scholar 

  4. Buijsse B, Simmons RK, Griffin SJ et al (2011) Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 33:46–62

    Article  PubMed  PubMed Central  Google Scholar 

  5. Herder C, Kowall B, Tabak AG et al (2014) The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57:16–29

    Article  PubMed  CAS  Google Scholar 

  6. Grarup N, Sandholt CH, Hansen T et al (2014) Genetic susceptibility to type 2 diabetes and obesity: from genome-wide association studies to rare variants and beyond. Diabetologia 57:1528–1541

    Article  PubMed  CAS  Google Scholar 

  7. Hivert MF, Vassy JL, Meigs JB (2014) Susceptibility to type 2 diabetes mellitus – from genes to prevention. Nat Rev Endocrinol 10:198–205

    Article  PubMed  CAS  Google Scholar 

  8. Walford GA, Porneala BC, Dauriz M et al (2014) Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care. DOI 10.2337/dc14-0560 1935-5548

  9. Dimas AS, Lagou V, Barker A et al (2014) Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63:2158–2171

    Article  PubMed  CAS  Google Scholar 

  10. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Steinthorsdottir V, Thorleifsson G, Sulem P et al (2014) Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. Nat Genet 46:294–298

    Article  PubMed  CAS  Google Scholar 

  12. Moltke I, Grarup N, Jorgensen ME et al (2014) A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512:190–193

    Article  PubMed  CAS  Google Scholar 

  13. Lohmueller KE, Sparso T, Li Q et al (2013) Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. Am J Hum Genet 93:1072–1086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Mahajan A, Go MJ, Zhang W et al (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46:234–239

    Article  PubMed  CAS  Google Scholar 

  15. Vassy JL, Hivert MF, Porneala B et al (2014) Polygenic type 2 diabetes prediction at the limit of common variant detection. Diabetes 63:2172–2182

    Article  PubMed  CAS  Google Scholar 

  16. Klimentidis YC, Wineinger NE, Vazquez AI et al (2014) Multiple metabolic genetic risk scores and type 2 diabetes in three racial/ethnic groups. J Clin Endocrinol Metab jc20141818

  17. Langenberg C, Sharp SJ, Franks PW et al (2014) Gene-lifestyle interaction and type 2 diabetes: the EPIC InterAct case-cohort study. PLoS Med 11:e1001647

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aschard H, Chen J, Cornelis MC et al (2012) Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am J Hum Genet 90:1–11

    Article  Google Scholar 

  19. Bain JR, Stevens RD, Wenner BR et al (2009) Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 58:2429–2443

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  21. Nicholson JK, Connelly J, Lindon JC et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161

    Article  PubMed  CAS  Google Scholar 

  22. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Suhre K, Shin SY, Petersen AK et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477:54–60

    Article  PubMed  CAS  Google Scholar 

  24. Assfalg M, Bertini I, Colangiuli D et al (2008) Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci U S A 105:1420–1424

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Psychogios N, Hau DD, Peng J et al (2011) The human serum metabolome. PLoS One 6:e16957

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Spratlin JL, Serkova NJ, Eckhardt SG (2009) Clinical applications of metabolomics in oncology: a review. Clin Cancer Res 15:431–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Suhre K, Meisinger C, Döring et al (2010) Metabolic footprint of diabetes: a multiplatform metabolomics study in an epidemiological setting. PLoS One 5:e13953

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang TJ, Larson MG, Vasan RS et al (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17:448–453

    Article  PubMed  PubMed Central  Google Scholar 

  29. Würtz P, Soininen P, Kangas AJ et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36:648–655

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang-Sattler R, Yu Z, Herder C et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615

    Article  PubMed  PubMed Central  Google Scholar 

  31. Floegel A, Stefan N, Yu Z et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62:639–648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Herder und T. Illig geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Herder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herder, C., Illig, T. Neue Biomarker und Gene in der Prädiktion des Typ-2-Diabetes. Diabetologe 10, 566–571 (2014). https://doi.org/10.1007/s11428-014-1211-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-014-1211-y

Schlüsselwörter

Keywords

Navigation