Skip to main content
Log in

FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Double carbon coated FeP composite (FeP@NC@rGO) was in situ fabricated via the phosphorization process of the as-prepared Prussian blue@graphene oxide (PB@GO) precursor. The FeP nanocrystals were successfully embedded in the nitrogen-doped porous carbon matrix. When used as the anode for lithium ion batteries (LIBs), the FeP@NC@rGO anode shows superior lithium storage properties, delivering a high specific capacity of 830 mA h g−1 after 100 cycles at 100 mA g−1 and excellent rate capability of 359 mA h g−1 at 5 A g−1. The outstanding performance mainly ascribes to the synergistic effect of the double carbon coating and porous structure design. The introduction of porous carbon and graphene coating on FeP nanoparticles greatly enhance the electronic conductivity of the active material and well accommodates the large volume variation of FeP during the cycling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ohzuku T, Makimura Y. Chem Lett, 2001, 30: 642–643

    Article  Google Scholar 

  2. Xu K. Chem Rev, 2004, 104: 4303–4418

    Article  CAS  PubMed  Google Scholar 

  3. Derrien G, Hassoun J, Panero S, Scrosati B. Adv Mater, 2007, 19: 2336–2340

    Article  CAS  Google Scholar 

  4. Liu C, Li F, Ma LP, Cheng HM. Adv Mater, 2010, 22: E28–E62

    Article  CAS  PubMed  Google Scholar 

  5. Guo YG, Chen J. Sci China Chem, 2017, 60: 1–2

    Google Scholar 

  6. Shin HC, Liu M. Adv Funct Mater, 2005, 15: 582–586

    Article  CAS  Google Scholar 

  7. Wang Y, Xu M, Peng Z, Zheng G. J Mater Chem A, 2013, 1: 13222–13226

    Article  CAS  Google Scholar 

  8. Park CM, Kim JH, Kim H, Sohn HJ. Chem Soc Rev, 2010, 39: 3115–3141

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri AM, Sun X. Angew Chem, 2014, 126: 6828–6832

    Article  Google Scholar 

  10. Yuan D, Huang G, Yin D, Wang X, Wang C, Wang L. ACS Appl Mater Interfaces, 2017, 9: 18178–18186

    Article  CAS  PubMed  Google Scholar 

  11. Yuan C, Wu HB, Xie Y, Lou XWD. Angew Chem Int Ed, 2014, 53: 1488–1504

    Article  CAS  Google Scholar 

  12. Li Q, Li Z, Zhang Z, Li C, Ma J, Wang C, Ge X, Dong S, Yin L. Adv Energy Mater, 2016, 6: 1600376

    Article  CAS  Google Scholar 

  13. Wu C, Kopold P, van Aken PA, Maier J, Yu Y. Adv Mater, 2017, 29: 1604015

    Article  CAS  Google Scholar 

  14. Fan M, Chen Y, Xie Y, Yang T, Shen X, Xu N, Yu H, Yan C. Adv Funct Mater, 2016, 26: 5002

    Article  CAS  Google Scholar 

  15. Cui YH, Xue MZ, Fu ZW, Wang XL, Liu XJ. Cheminform, 2013, 44: 283–290

    Google Scholar 

  16. Veluri PS, Mitra S. Cheminform, 2016, 47: 87675–87679

    Article  Google Scholar 

  17. Jiang H, Chen B, Pan J, Li C, Liu C, Liu L, Yang T, Li W, Li H, Wang Y, Chen L, Chen M. J Alloys Compd, 2017, 728: 328–336

    Article  CAS  Google Scholar 

  18. Wang X, Na Z, Yin D, Wang C, Huang G, Wang L. Energy Storage Mater, 2018, 12: 103–109

    Article  Google Scholar 

  19. Xin S, Guo YG, Wan LJ. Acc Chem Res, 2012, 45: 1759–1769

    Article  CAS  PubMed  Google Scholar 

  20. Yang ZD, Chang ZW, Xu JJ, Yang XY, Zhang XB. Sci China Chem, 2017, 60: 1540–1545

    Article  CAS  Google Scholar 

  21. Jiang J, Wang C, Liang J, Zuo J, Yang Q. Dalton Trans, 2015, 44: 10297–10303

    Article  CAS  PubMed  Google Scholar 

  22. Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554–1560

    Article  CAS  Google Scholar 

  23. Wang X, Chen K, Wang G, Liu X, Wang H. ACS Nano, 2017, 11: 11602–11616

    Article  CAS  PubMed  Google Scholar 

  24. Yang W, Hao J, Zhang Z, Zhang B. J Colloid Interface Sci, 2015, 460: 55–60

    Article  CAS  PubMed  Google Scholar 

  25. Zhang JW, Zhang HT, Du ZY, Wang X, Yu SH, Jiang HL. Chem Commun, 2013, 50: 1092–1094

    Article  Google Scholar 

  26. Kaye SS, Dailly A, Yaghi OM, Long JR. J Am Chem Soc, 2007, 129: 14176–14177

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Ma D, Du J. Talanta, 2014, 120: 362–367

    Article  CAS  PubMed  Google Scholar 

  28. Kong B, Selomulya C, Zheng G, Zhao D. Chem Soc Rev, 2015, 44: 7997–8018

    Article  CAS  PubMed  Google Scholar 

  29. Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE, Levchenko VA, Matveyenko VN, Varfolomeyev SD. Anal Chem, 2004, 76: 474–478

    Article  CAS  PubMed  Google Scholar 

  30. DeLongchamp D, Hammond P. Adv Funct Mater, 2004, 14: 224–232

    Article  CAS  Google Scholar 

  31. Zhao W, Xu JJ, Shi CG, Chen HY. Langmuir, 2005, 21: 9630–9634

    Article  CAS  PubMed  Google Scholar 

  32. Uemura T, Ohba M, Kitagawa S. Inorg Chem, 2004, 43: 7339–7345

    Article  CAS  PubMed  Google Scholar 

  33. Graham HD. J Agric Food Chem, 1992, 40: 801–805

    Article  CAS  Google Scholar 

  34. Zhu X, Liu M, Liu Y, Chen R, Nie Z, Li J, Yao S. J Mater Chem A, 2016, 4: 8974–8977

    Article  CAS  Google Scholar 

  35. Hummers WS Jr., Offeman RE. J Am Chem Soc, 1958, 80: 1339

    Article  CAS  Google Scholar 

  36. Zhang L, Wu HB, Madhavi S, Hng HH, Lou XWD. J Am Chem Soc, 2012, 134: 17388–17391

    Article  CAS  PubMed  Google Scholar 

  37. Liu X, Zhong X, Yang Z, Pan F, Gu L, Yu Y. Electrochim Acta, 2015, 152: 178–186

    Article  CAS  Google Scholar 

  38. Grosvenor AP, Wik SD, Cavell RG, Mar A. Inorg Chem, 2005, 44: 8988–8998

    Article  CAS  PubMed  Google Scholar 

  39. Stankovich S, Piner RD, Chen X, Wu N, Nguyen SBT, Ruoff RS. J Mater Chem, 2006, 16: 155–158

    Article  CAS  Google Scholar 

  40. Wang S, Chen M, Xie Y, Fan Y, Wang D, Jiang JJ, Li Y, Grützmacher H, Su CY. Small, 2016, 12: 2365–2375

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Cheng J, Li W, Zhong X, Yang Z, Gu L, Yu Y. Nanoscale, 2014, 6: 7817–7822

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Xu Y, Ma X, Feng J, Qian Y, Xiong S. Nano Energy, 2014, 7: 52–62

    Article  CAS  Google Scholar 

  43. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML. Cheminform, 2006, 37: 3531–3538

    Article  Google Scholar 

  44. Li Z, Li B, Yin L, Qi Y. ACS Appl Mater Interfaces, 2014, 6: 8098–8107

    Article  CAS  PubMed  Google Scholar 

  45. Xu YT, Guo Y, Li C, Zhou XY, Tucker MC, Fu XZ, Sun R, Wong CP. Nano Energy, 2015, 11: 38–47

    Article  CAS  Google Scholar 

  46. Liu X, Wu Y, Yang Z, Pan F, Zhong X, Wang J, Gu L, Yu Y. J Power Sources, 2015, 293: 799–805

    Article  CAS  Google Scholar 

  47. Guo P, Song H, Chen X. Electrochimica Acta, 2009, 11: 1320–1324

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFB0100305), the National Natural Science Foundation of China (51622210), and the Fundamental Research Funds for the Central Universities (WK3430000004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yu.

Electronic supplementary material

11426_2018_9278_MOESM1_ESM.docx

FeP Nanoparticles Derived from Metal-Organic Frameworks/GO and Phosphorization as High-Performance Anode Material for Lithium Ion Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Liu, X., Yang, H. et al. FeP nanoparticles derived from metal-organic frameworks/GO as high-performance anode material for lithium ion batteries. Sci. China Chem. 61, 1151–1158 (2018). https://doi.org/10.1007/s11426-018-9278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9278-5

Keywords

Navigation