Skip to main content
Log in

Aptamer-based self-assembled supramolecular vesicles for pH-responsive targeted drug delivery

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Supramolecular vesicles have received great attention in biomedical application due to their inherent features, including simple synthesis and tunable amphiphilicity of the building blocks. Despite tremendous research efforts, developing supramolecular vesicles with targeted recognition and controlled release remains a major challenge. Herein, we constructed a novel aptamer-based self-assembled supramolecular vesicle by host-guest complexation of pyrene, viologen lipid, and cucurbit[8]urils for pH-responsive and targeted drug delivery. The proposed supramolecular vesicles are easy to be assembled and offer simple drug loading. Based on confocal fluorescence microscopy and cytotoxicity experiments, the drug-loaded supramolecular vesicles were shown to possess highly efficient internalization and apparent cytotoxic effect on target cancer cells, but not control cells. Furthermore, through simple aptamer or drug substitution, supramolecular vesicles can be applied to a variety of target cell lines and drugs, making it widely applicable. Taking advantage of the easy preparation, good stability, rapid pH response, and cell targeting ability, the aptamer-based self-assembled supramolecular vesicles hold great promise in controlled-release biomedical applications and targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen TM, Cullis PR. Science, 2004, 303: 1818–1822

    Article  CAS  Google Scholar 

  2. Guo X, Szoka FC. Acc Chem Res, 2003, 36: 335–341

    Article  CAS  Google Scholar 

  3. Christensen SM, Stamou DG. Sensors, 2010, 10: 11352–11368

    Article  CAS  Google Scholar 

  4. Wang J, Sun X, Mao W, Sun W, Tang J, Sui M, Shen Y, Gu Z. Adv Mater, 2013, 25: 3670–3676

    Article  CAS  Google Scholar 

  5. Song J, Zhou J, Duan H. J Am Chem Soc, 2012, 134: 13458–13469

    Article  CAS  Google Scholar 

  6. Ren T, Liu Q, Lu H, Liu H, Zhang X, Du J. J Mater Chem, 2012, 22: 12329–12338

    Article  CAS  Google Scholar 

  7. Du J, Armes SP. J Am Chem Soc, 2005, 127: 12800–12801

    Article  CAS  Google Scholar 

  8. Rodríguez-Hernández J, Lecommandoux S. J Am Chem Soc, 2005, 127: 2026–2027

    Article  Google Scholar 

  9. Tannock IF, Rotin D. Cancer Res, 1989, 49: 4373–4384

    CAS  Google Scholar 

  10. Li J, Wu S, Wu C, Qiu L, Zhu G, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng IT, Yang HH, Tan W. Nanoscale, 2016, 8: 8600–8606

    Article  CAS  Google Scholar 

  11. Lin LS, Cong ZX, Li J, Ke KM, Guo SS, Yang HH, Chen GN. J Mater Chem B, 2014, 2: 1031–1037

    Article  CAS  Google Scholar 

  12. Yang H, Yuan B, Zhang X, Scherman OA. Acc Chem Res, 2014, 47: 2106–2115

    Article  CAS  Google Scholar 

  13. Cao Y, Hu XY, Li Y, Zou X, Xiong S, Lin C, Shen YZ, Wang L. J Am Chem Soc, 2014, 136: 10762–10769

    Article  CAS  Google Scholar 

  14. Rauwald U, Scherman OA. Angew Chem Int Ed, 2008, 47: 3950–3953

    Article  CAS  Google Scholar 

  15. Kim J, Jung IS, Kim SY, Lee E, Kang JK, Sakamoto S, Yamaguchi K, Kim K. J Am Chem Soc, 2000, 122: 540–541

    Article  CAS  Google Scholar 

  16. Jiao D, Geng J, Loh XJ, Das D, Lee TC, Scherman OA. Angew Chem Int Ed, 2012, 51: 9633–9637

    Article  CAS  Google Scholar 

  17. Li J, Zheng C, Cansiz S, Wu C, Xu J, Cui C, Liu Y, Hou W, Wang Y, Zhang L, Teng I, Yang HH, Tan W. J Am Chem Soc, 2015, 137: 1412–1415

    Article  CAS  Google Scholar 

  18. Yan L, Shi H, He D, He X, Wang K, Xu F. Sci China Chem, 2016, 59: 802–808

    Article  CAS  Google Scholar 

  19. Huang R, Xi Z, He N. Sci China Chem, 2015, 58: 1122–1130

    Article  CAS  Google Scholar 

  20. Li J, Mo L, Lu CH, Fu T, Yang HH, Tan W. Chem Soc Rev, 2016, 45: 1410–1431

    Article  CAS  Google Scholar 

  21. Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, Yang Z. Biomaterials, 2014, 35: 3840–3850

    Article  CAS  Google Scholar 

  22. Zhao X, Huang Y, Yang CJ, Mao B. Sci China Chem, 2015, 58: 1858–1865

    Article  CAS  Google Scholar 

  23. Song Y, Zhu Z, An Y, Zhang W, Zhang H, Liu D, Yu C, Duan W, Yang CJ. Anal Chem, 2013, 85: 4141–4149

    Article  CAS  Google Scholar 

  24. Munz M, Baeuerle PA, Gires O. Cancer Res, 2009, 69: 5627–5629

    Article  CAS  Google Scholar 

  25. Marquez C, Nau WM. Angew Chem Int Ed, 2001, 40: 3155–3160

    Article  CAS  Google Scholar 

  26. Ghosh M, Zhang R, Lawler RG, Seto CT. J Org Chem, 2000, 65: 735–741

    Article  CAS  Google Scholar 

  27. Wash PL, Renslo AR, Rebek, Jr. J. Angew Chem Int Ed, 2001, 40: 1221–1222

    Article  CAS  Google Scholar 

  28. Kim HJ, Heo J, Jeon WS, Lee E, Kim J, Sakamoto S, Yamaguchi K, Kim K. Angew Chem Int Ed, 2001, 40: 1526–1529

    Article  CAS  Google Scholar 

  29. Percec V, Glodde M, Bera TK, Miura Y, Shiyanovskaya I, Singer KD, Balagurusamy VSK, Heiney PA, Schnell I, Rapp A, Spiess HW, Hudson SD, Duan H. Nature, 2002, 417: 384–387

    Article  Google Scholar 

  30. Buschmann HJ, Cleve E, Schollmeyer E. Inorg Chim Acta, 1992, 193: 93–97

    Article  CAS  Google Scholar 

  31. Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L. J Am Chem Soc, 2013, 135: 10542–10549

    Article  CAS  Google Scholar 

  32. Gerweck LE, Seetharaman K. Cancer Res, 1996, 56: 1194–1198

    CAS  Google Scholar 

  33. Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, Steeber DA, Gong S. ACS Nano, 2010, 4: 6805–6817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21475026, U1505221, 21505021, 21622502, 21635002), the Natural Science Foundation of Fujian Province of China (2015H6011, 2016J05035), the Program for Changjiang Scholars and Innovative Research Team in University (IRT15R11), and the Independent Research Project of State Key Laboratory of Photocatalysis on Energy and Environment (2014B02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guixiao Jin, Xiaoping Xu or Huang-Hao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Li, J., Liang, H. et al. Aptamer-based self-assembled supramolecular vesicles for pH-responsive targeted drug delivery. Sci. China Chem. 60, 628–634 (2017). https://doi.org/10.1007/s11426-016-0351-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0351-5

Keywords

Navigation