Skip to main content
Log in

Steady-migration retention characteristics of peptides under gradient elution: application towards a dynamic separation method for minor-adjustments of the retention of peptides in RPLC

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Minor-adjustment of the retention of peptides, induced by varying the mobile phase flow-rate (MPF-R), is a new dynamic separation method for simultaneously and rapidly identifying and improving the selectivity of hidden and overlapping peptide peaks. It can also-stabilize the reverse elution order of some pair-peaks under gradient elution in reverse phase liquid chromatography. The retention characteristics of peptides under gradient elution in RPLC was firstly found to be dominated by two variables of the steady region (SR) and migration region (MR). The changes in peptide retention induced by varying the MPF-R can be attributed to changes in the rate of bond breaking of multiple molecular interactions of peptides from the SR and of the mass transfer of peptides from the stationary phase to the mobile phase in the MR. The two dynamic variables were also found to independently depend on the type of peptide. Desirable results were obtained using six standard oligopeptides and a real sample of trypsin-digested lysozyme. It is expected that the quality control of peptide drugs, high dispersion of peptide peaks in peptide mapping and “bottom-up MS” in proteomics will be improved by this method, even enabling peptide purification on a preparative scale in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Camerini S, Mauri P. J Chromatogr A, 2015, 1381: 1–12

    Article  CAS  Google Scholar 

  2. Fekete S, Veuthey JL, Guillarme D. J Pharmaceut Biomed, 2012, 69: 9–27

    Article  CAS  Google Scholar 

  3. Zhang CX, Zhang RY, Li Q, Huang YD, Zhao L, Su ZG, Gong, FL, Li Z, Song HY, Li W, Yuan QP, Ma GH. Sep Puri Technol, 2015, 154: 351–358

    Article  CAS  Google Scholar 

  4. Sarrut M, D’Attoma A, Heinisch S. J Chromatogr A, 2015, 1421: 48–59

    Article  CAS  Google Scholar 

  5. Davis MT, Beierle J, Bures ET, McGinley MD, Mort J, Robinson JH, Spahr CS, Yu W, Luethy R, Patterson SD. J Chromatogr B, 2001, 752: 281–291

    Article  CAS  Google Scholar 

  6. Andrzejewska A, Gritti F, Guiochon G. J Chromatogr A, 2009, 1216: 3992–4004

    Article  CAS  Google Scholar 

  7. Gilar M, Xie H, Jaworski A. Anal Chem, 2010, 82: 265–275

    Article  CAS  Google Scholar 

  8. Yao B, Liu G, Kang S, Xiang C, Huang B, Weng W, Zeng Q. Chromatographia, 2011, 74: 625–631

    Article  CAS  Google Scholar 

  9. Xiang C, Liu G, Kang S, Guo X, Yao B, Weng W, Zeng Q. J Chromatogr A, 2011, 1218: 8718–8721

    Article  CAS  Google Scholar 

  10. Snyder R, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 3rd Ed. New York: John Wiley & Sons, 2009

    Book  Google Scholar 

  11. Xue G, Bendick A, Chen R, Sekulic S. J Chromatogr A, 2004, 1050: 159–171

    Article  CAS  Google Scholar 

  12. Gilar M, Olivova P, Daly AE, Gebler JC. Anal Chem, 2005, 77: 6426–6434

    Article  CAS  Google Scholar 

  13. Glajch JL, Quarry MA, Vasta JF, Snyder LR. Anal Chem, 1986, 58: 280–285

    Article  CAS  Google Scholar 

  14. Stadalius MA, Gold HS, Snyder LR. J Chromatogr A, 1984, 296: 31–59

    Article  CAS  Google Scholar 

  15. Dolan JW. Flow-rate and peak spacing. C Troubleshooting, LCGC North America. VOL. 21, No. 4, Apr. 2003.http://connection.ebscohost.com/c/articles/10016347/flow-rate-peak-spacing

    Google Scholar 

  16. Andrew G. Flow rate, in reverse phase HPLC basics for LC/MS. Ion-Source Tutorial. http://www.ionsource.com, accessed on 2015-09-15

  17. Geng X, Jia X, Liu P, Wang F, Yang X. Analyst, 2015, 140: 6692–6704

    Article  CAS  Google Scholar 

  18. Geng, XD, Jia X, Liu P, Wang F, Yang X. ATLAS of SCINCE. http://atlasofscience.org/, accessed on 2015-10-11

  19. Makarov A, LoBrutto R, Karpinski P. J Chromatogr A, 2013, 1318: 112–121

    Article  CAS  Google Scholar 

  20. McCalley DV. TrAC-Trends Anal Chem, 2014, 63: 31–43

    Article  CAS  Google Scholar 

  21. Miller C, Dadoo R, Kooser RG, Gorse J. J Chromatogr A, 1988, 458: 255–266

    Article  CAS  Google Scholar 

  22. Sentell KB. J Chromatogr A, 1993, 656: 231–263

    Article  CAS  Google Scholar 

  23. Gritti F, Guiochon G. J Chromatogr A, 2005, 1069: 31–42

    Article  CAS  Google Scholar 

  24. Geng XD, Regnier FE. J Chromatogr A, 1984, 296: 15–30

    Article  CAS  Google Scholar 

  25. Geng XD, Shi YL. Sci China Ser-B, 1989, 32: 11–22

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of Provincial Key Laboratory of Modern Separation Science (12JS091, 13JS117, 14JS096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Du Geng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Lu, Y., Yang, Y. et al. Steady-migration retention characteristics of peptides under gradient elution: application towards a dynamic separation method for minor-adjustments of the retention of peptides in RPLC. Sci. China Chem. 60, 829–836 (2017). https://doi.org/10.1007/s11426-016-0318-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0318-2

Keywords

Navigation