Skip to main content
Log in

N-vinyl pyrrolidone promoted aqueous-phase dehydrogenation of formic acid over PVP-stabilized Ru nanoclusters

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this work, we fabricated the poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium(0) nanoclusters by reduction of RuCl3 using different reducing agents, and studied their catalytic activity in hydrogen generation from the decomposition of formic acid. It was demonstrated that N-vinyl-2-pyrrolidone (NVP), which is a monomer of PVP, could promote the reaction by coordination with Ru nanoparticles. The Ru nanoparticles catalyst reduced by sodium borohydride (NaBH4) exhibited highest catalytic activity for the decomposition of formic acid into H2 and CO2. The turnover of numenber (TOF) value could reach 26113 h–1 at 80 °C. We believe that the effective catalysts have potential of application in hydrogen storage by formic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Leitao EM, Jurca T, Manners I. Nat Chem, 2013, 5: 817–829

    Article  CAS  Google Scholar 

  2. Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G. Chem Commun, 2013, 49: 8735–8751

    Article  CAS  Google Scholar 

  3. Yang J, Sudik A, Wolverton C, Siegel DJ. Chem Soc Rev, 2010, 39: 656–675

    Article  CAS  Google Scholar 

  4. Ma S, Zhou HC. Chem Commun, 2010, 46: 44–53

    Article  CAS  Google Scholar 

  5. Schlapbach L, Züttel A. Nature, 2001, 414: 353–358

    Article  CAS  Google Scholar 

  6. Chen P, Xiong Z, Luo J, Lin J, Tan KL. Nature, 2002, 420: 302–304

    Article  CAS  Google Scholar 

  7. Orimo S, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. Chem Rev, 2007, 107: 4111–4132

    Article  CAS  Google Scholar 

  8. Graetz J. Chem Soc Rev, 2009, 38: 73–82

    Article  CAS  Google Scholar 

  9. Suh MP, Park HJ, Prasad TK, Lim DW. Chem Rev, 2012, 112: 782–835

    Article  CAS  Google Scholar 

  10. Staubitz A, Robertson APM, Manners I. Chem Rev, 2010, 110: 4079–4124

    Article  CAS  Google Scholar 

  11. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE. Nat Nanotech, 2011, 6: 302–307

    Article  CAS  Google Scholar 

  12. Gu X, Lu ZH, Jiang HL, Akita T, Xu Q. J Am Chem Soc, 2011, 133: 11822–11825

    Article  CAS  Google Scholar 

  13. Bulushev DA, Jia L, Beloshapkin S, Ross JRH. Chem Commun, 2012, 48: 4184–4186

    Article  CAS  Google Scholar 

  14. Enthaler S, von Langermann J, Schmidt T. Energy Environ Sci, 2010, 3: 1207–1217

    Article  CAS  Google Scholar 

  15. Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S. J Electrochem Soc, 2001, 148: A11–A23

    Article  CAS  Google Scholar 

  16. Zhu QL, Tsumori N, Xu Q. Chem Sci, 2014, 5: 195–199

    Article  CAS  Google Scholar 

  17. Qin Y, Wang J, Meng F, Wang L, Zhang X. Chem Commun, 2013, 49: 10028–10030

    Article  CAS  Google Scholar 

  18. Jiang HL, Singh SK, Yan JM, Zhang XB, Xu Q. ChemSusChem, 2010, 3: 541–549

    Article  CAS  Google Scholar 

  19. Fellay C, Dyson PJ, Laurenczy G. Angew Chem Int Ed, 2008, 47: 3966–3968

    Article  CAS  Google Scholar 

  20. Ojeda M, Iglesia E. Angew Chem Int Ed, 2009, 48: 4800–4803

    Article  CAS  Google Scholar 

  21. Loges B, Boddien A, Gärtner F, Junge H, Beller M. Top Catal, 2010, 53: 902–914

    Article  CAS  Google Scholar 

  22. Boddien A, Mellmann D, Gartner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M. Science, 2011, 333: 1733–1736

    Article  CAS  Google Scholar 

  23. Hull JF, Himeda Y, Wang WH, Hashiguchi B, Periana R, Szalda DJ, Muckerman JT, Fujita E. Nat Chem, 2012, 4: 383–388

    Article  CAS  Google Scholar 

  24. Grasemann M, Laurenczy G. Energy Environ Sci, 2012, 5: 8171–8181

    Article  CAS  Google Scholar 

  25. Martis M, Mori K, Fujiwara K, Ahn WS, Yamashita H. J Phys Chem C, 2013, 117: 22805–22810

    Article  CAS  Google Scholar 

  26. Moret S, Dyson PJ, Laurenczy G. Nat Commun, 2014, 5: 4017

    Article  CAS  Google Scholar 

  27. Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T. Angew Chem Int Ed, 2010, 49: 5101–5105

    Article  CAS  Google Scholar 

  28. Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T. J Am Chem Soc, 2011, 133: 15240–15243

    Article  CAS  Google Scholar 

  29. Yadav M, Xu Q. Energy Environ Sci, 2012, 5: 9698–9725

    Article  CAS  Google Scholar 

  30. Fukuzumi S, Kobayashi T, Suenobu T. J Am Chem Soc, 2010, 132: 1496–1497

    Article  CAS  Google Scholar 

  31. Boddien A, Loges B, Grtner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M. J Am Chem Soc, 2010, 132: 8924–8934

    Article  CAS  Google Scholar 

  32. Fukuzumi S, Kobayashi T, Suenobu T. ChemSusChem, 2008, 1: 827–834

    Article  CAS  Google Scholar 

  33. Loges BÃ, Boddien A, Junge H, Beller M. Angew Chem Int Ed, 2008, 47: 3962–3965

    Article  CAS  Google Scholar 

  34. Himeda Y. Green Chem, 2009, 11: 2018–2022

    Article  CAS  Google Scholar 

  35. Sponholz P, Mellmann D, Junge H, Beller M. ChemSusChem, 2013, 6: 1172–1176

    Article  CAS  Google Scholar 

  36. Gan W, Snelders DJM, Dyson PJ, Laurenczy G. ChemCatChem, 2013, 5: 1126–1132

    Article  CAS  Google Scholar 

  37. Thevenon A, Frost-Pennington E, Weijia G, Dalebrook AF, Laurenczy G. ChemCatChem, 2014, 6: 3146–3152

    Article  CAS  Google Scholar 

  38. Huang Y, Zhou X, Yin M, Liu C, Xing W. Chem Mater, 2010, 22: 5122–5128

    Article  CAS  Google Scholar 

  39. Zhou X, Huang Y, Liu C, Liao J, Lu T, Xing W. ChemSusChem, 2010, 3: 1379–1382

    Article  CAS  Google Scholar 

  40. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T. Chem Commun, 2008, 48: 3540–3542

    Article  Google Scholar 

  41. Ojeda M, Iglesia E. Angew Chem, 2009, 121: 4894–4897

    Article  Google Scholar 

  42. Ting SW, Cheng S, Tsang KY, van der Laak N, Chan KY. Chem Commun, 2009, 47: 7333

    Article  Google Scholar 

  43. Xiao C, Cai Z, Wang T, Kou Y, Yan N. Angew Chem Int Ed, 2008, 47: 746–749

    Article  CAS  Google Scholar 

  44. Xiao C, Wang H, Mu X, Kou Y. J Catal, 2007, 250: 25–32

    Article  CAS  Google Scholar 

  45. Zhu JF, Tao GH, Liu HY, He L, Sun QH, Liu HC. Green Chem, 2014, 16: 2664–2669

    Article  CAS  Google Scholar 

  46. Hou Z, Theyssen N, Brinkmann A, Leitner W. Angew Chem Int Ed, 2005, 117: 1370–1373

    Article  Google Scholar 

  47. Zhao D, Wu M, Kou Y, Min E. Catal Today, 2002, 74: 157–189

    Article  CAS  Google Scholar 

  48. Li Z, Zhang J, Mu T, Du J, Liu Z, Han B, Chen J. Colloid Surfaces A, 2004, 243: 63–66

    Article  CAS  Google Scholar 

  49. Yan N, Yuan Y, Dyson PJ. Chem Commun, 2011, 47: 2529–2531

    Article  CAS  Google Scholar 

  50. Umpierre AP, de Jesús E, Dupont J. ChemCatChem, 2011, 3: 1413–1418

    Article  CAS  Google Scholar 

  51. Jiang K, Xu K, Zou S, Cai WB. J Am Chem Soc, 2014, 136: 4861–4864

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huizhen Liu or Buxing Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Mei, Q., Wang, Y. et al. N-vinyl pyrrolidone promoted aqueous-phase dehydrogenation of formic acid over PVP-stabilized Ru nanoclusters. Sci. China Chem. 59, 1342–1347 (2016). https://doi.org/10.1007/s11426-016-0223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0223-0

Keywords

Navigation