Skip to main content
Log in

A new method for improving the accuracy of miRNA detection with NaYF4:Yb,Er upconversion nanoparticles

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs, which play a central role in gene expression regulation and have been considered as excellent biomarker candidates for clinical diagnosis and prognosis. So far, many miRNAs detection methods require polymerase chain reaction (PCR) amplification following reverse transcription of miRNAs. These processes are complicated and time-consuming. In this work, we have developed a simpler method for miRNA detection based on base stacking hybridization happening on the surface of NaYF4:Yb,Er upconversion nanoparticles. In this method, the fluorescence of NaYF4:Yb,Er upconversion nanoparticles were functionalized as a reference standard, which can improve the accuracy of miRNA detection. On the basis of these findings, we suggest this novel approach for miRNA detection could be applied as an accurate and specific technique for miRNAs detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang L, Duan D, Shen Y, Li J. Biosens Bioelectron, 2012, 34: 291–295

    Article  CAS  Google Scholar 

  2. Tan XY, Fan SC, Wu W, Zhang Y. Bone Res, 2015, 3: 5033

    Google Scholar 

  3. Lu Z, Zhang L, Deng Y, Li S, He N. Nanoscale, 2012, 4: 5840–5842

    Article  CAS  Google Scholar 

  4. Heneghan HM, Miller N, Kerin MJ. Curr Opin Pharmacol, 2010, 10: 543–550

    Article  CAS  Google Scholar 

  5. Soifer HS, Rossi JJ, Sætrom P. Mol Ther, 2007, 15: 2070–2079

    Article  CAS  Google Scholar 

  6. Nikitina EG, Urazova LN, Stegny VN. Exp Oncol, 2012, 34: 2–8

    CAS  Google Scholar 

  7. Shen J, Stass SA, Jiang F. Cancer Lett, 2013, 329: 125–136

    Article  CAS  Google Scholar 

  8. Li JW, Robison K, Martin M, Sjodin A, Usadel B, Young M, Olivares EC, Bolser DM. Nucleic Acids Res, 2011, 40: D1313–D1317

  9. Hayes J, Peruzzi PP, Lawler S. Trends Mol Med, 2014, 20: 460–469

    Article  CAS  Google Scholar 

  10. Mou X, Li T, Wang J, Ali Z, Zhang Y, Chen Z, Deng Y, Li S, Su E, Jia Q, He N, Ni J, Cui D. J Biomed Nanotechnol, 2015, 11: 2057–2066

    Article  CAS  Google Scholar 

  11. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Nature, 2013, 495: 384–388

    Article  CAS  Google Scholar 

  12. Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R. Science, 2015, 347: 991–994

    Article  CAS  Google Scholar 

  13. Thomson JM, Parker J, Perou CM, Hammond SM. Nat Meth, 2004, 1: 47–53

    Article  CAS  Google Scholar 

  14. Kang K, Zhang X, Liu H, Wang Z, Zhong J, Huang Z, Peng X, Zeng Y, Wang Y, Yang Y, Luo J, Gou D, Mukhopadhyay P. PLoS ONE, 2012, 7: e48536

    Article  Google Scholar 

  15. Wang M, Zhang P, Li Y, Liu G, Zhou B, Zhan L, Zhou Z, Sun X. Med Oncol, 2012, 29: 3113–3118

    Article  CAS  Google Scholar 

  16. Witwer KW, McAlexander MA, Queen SE, Adams RJ. RNA Biol, 2014, 10: 1080–1086

    Article  Google Scholar 

  17. Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y. Angew Chem, 2009, 121: 3318–3322

    Article  Google Scholar 

  18. Deng R, Tang L, Tian Q, Wang Y, Lin L, Li J. Angew Chem Int Ed, 2014, 53: 2389–2393

    Article  CAS  Google Scholar 

  19. Jiang L, Shen Y, Zheng K, Li J. Biosens Bioelectron, 2014, 61: 222–226

    Article  CAS  Google Scholar 

  20. Wang J, Ali Z, Wang N, Liang W, Liu H, Li F, Yang H, He L, Nie L, He N, Li Z. Sci China Chem, 2015, 58: 1774–1778

    Article  CAS  Google Scholar 

  21. Wang JH, Ali ZS, Si J, Wang NY, He NY, Li ZY. J Nanosci Nanotechnol (in press), 2016

    Google Scholar 

  22. Alonso-Cristobal P, Vilela P, El-Sagheer A, Lopez-Cabarcos E, Brown T, Muskens OL, Rubio-Retama J, Kanaras AG. ACS Appl Mater Interf, 2015, 7: 12422–12429

    Article  CAS  Google Scholar 

  23. Tu D, Zheng W, Liu Y, Zhu H, Chen X. Coordin Chem Rev, 2014, 273–274: 13–29

    Article  Google Scholar 

  24. Li B. Sci China Chem, 2015, 58: 970–970

    Article  CAS  Google Scholar 

  25. Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W. Proc Natl Acad Sci, 2013, 110: 7998–8003

    Article  CAS  Google Scholar 

  26. Da Costa MV, Doughan S, Han Y, Krull UJ. Anal Chim Acta, 2014, 832: 1–33

    Article  Google Scholar 

  27. Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Adv Drug Deliver Rev, 2013, 65: 703–718

    Article  CAS  Google Scholar 

  28. Qiu P, Zhou N, Chen H, Zhang C, Gao G, Cui D. Nanoscale, 2013, 5: 11512–11525

    Article  CAS  Google Scholar 

  29. Lin M, Zhao Y, Wang SQ, Liu M, Duan ZF, Chen YM, Li F, Xu F, Lu TJ. Biotech Adv, 2012, 30: 1551–1561

    Article  CAS  Google Scholar 

  30. Zhang L, Mao L, Lu Z, Deng Y, He N. J Nanosci Nanotechnol, 2016, 16: 1220–1224

    Article  CAS  Google Scholar 

  31. Zhang L, Wang Z, Lu Z, Xia K, Deng Y, Li S, Zhang C, Huang Y, He N. J Nanosci Nanotech, 2014, 14: 4710–4713

    Article  CAS  Google Scholar 

  32. Sarkar S, Dash A, Mahalingam V. Chem Asian J, 2014, 9: 447–451

    Article  CAS  Google Scholar 

  33. Shen J, Chen G, Ohulchanskyy TY, Kesseli SJ, Buchholz S, Li Z, Prasad PN, Han G. Small, 2013, 9: 3213–3217

    Article  CAS  Google Scholar 

  34. Zhao J, Lu Z, Yin Y, McRae C, Piper JA, Dawes JM, Jin D, Goldys EM. Nanoscale, 2013, 5: 944–952

    Article  CAS  Google Scholar 

  35. Parinov S. Nucleic Acids Res, 1996, 24: 2998–3004

    Article  CAS  Google Scholar 

  36. Vasiliskov VA. Nucleic Acids Res, 2001, 29: 2303–2313

    Article  CAS  Google Scholar 

  37. Li Z, Zhang Y. Nanotechnology, 2008, 19: 345606

    Article  Google Scholar 

  38. Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y. Small, 2009, 5: 2285–2290

    Article  CAS  Google Scholar 

  39. Zhang L, Lu Z, Bai Y, Wang T, Wang Z, Chen J, Ding Y, Yang F, Xiao Z, Ju S, Zhu J, He N. J Mater Chem B, 2013, 1: 1289

    Article  CAS  Google Scholar 

  40. Zhang L, Xia K, Bai YY, Lu Z, Tang Y, Deng Y, Chen J, Qian W, Shen H, Zhang Z, Ju S, He N. J Biomed Nanotechnol, 2014, 10: 1440–1449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61301039, 21205036, 31270908, 61271056, 31540018), the Hunan Provincial Natural Science Foundation of China (13JJ4091), the Scientific Research Fund of Hunan Provincial Education Department (13A003), China Postdoctoral Science Foundation funded project (2014T70459) and the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013) 448].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nongyue He or Liming Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Lu, Z., He, N. et al. A new method for improving the accuracy of miRNA detection with NaYF4:Yb,Er upconversion nanoparticles. Sci. China Chem. 60, 157–162 (2017). https://doi.org/10.1007/s11426-016-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0021-0

Keywords

Navigation