Skip to main content
Log in

Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The significant role of telomeres in cells has attracted much attention since they were discovered. Fluorescence imaging is an effective method to study subcellular structures like telomeres. However, the diffraction limit of traditional optical microscope hampers further investigation on them. Recent progress on superresolution fluorescence microscopy has broken this limit. In this work, we used stimulated emission depletion (STED) microscope to observe fluorescence-labeled telomeres in interphase cell nuclei. The results showed that the size of fluorescent puncta representing telomeres under the STED microscope was much smaller than that under the confocal microscope. Two adjacent telomeres were clearly separated via STED imaging, which could hardly be discriminated by confocal microscopy due to the diffraction limit. We conclude that STED microscope is a more powerful tool that enable us to obtain detailed information about telomeres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackburn EH. Nature, 1991, 350: 569–573

    Article  CAS  Google Scholar 

  2. Eisenberg DTA. Am J Hum Biol, 2011, 23: 149–167

    Article  Google Scholar 

  3. O’sullivan RJ, Karlseder J. Nat Rev Mol Cell Biol, 2010, 8: 1118–1126

    Google Scholar 

  4. Denchi EL. DNA Repair, 2009, 8: 1118–1126

    Article  CAS  Google Scholar 

  5. Mattern KA, Swiggers SJJ, Nigg AL, Lowenberg B, Houtsmuller AB, Zijlmans JMJM. Mol Cell Biol, 2004, 24: 5587–5594

    Article  CAS  Google Scholar 

  6. Gomez D. Int J Oncol, 2012, 41: 1561–1569

    CAS  Google Scholar 

  7. Caporali A, Wark L, Vermolen BJ, Garini Y, Mai S. Oncogene, 2006, 26: 1398–1406

    Article  Google Scholar 

  8. Harley CB, Futcher AB, Greider CW. Nature, 1990, 345: 458–460

    Article  CAS  Google Scholar 

  9. Butt HZ, Atturu G, London NJ, Sayers RD, Bown MJ. Eur J Vasc Endovasc, 2010, 40: 17–26

    Article  CAS  Google Scholar 

  10. Blackburn EH. Nature, 2000, 408: 53–56

    Article  CAS  Google Scholar 

  11. Neumann AA, Reddel RR. Nat Rev Cancer, 2002, 2: 879–884

    Article  CAS  Google Scholar 

  12. Hanahan D, Weinberg RA. Cell, 2011, 144: 646–674

    Article  CAS  Google Scholar 

  13. Onel B, Lin C, Yang DZ. Sci China Chem, 2014, 57: 1605–1614

    Article  CAS  Google Scholar 

  14. Toomre D, Bewersdorf J. Annu Rev Cell Dev Biol, 2010, 26: 285–314

    Article  CAS  Google Scholar 

  15. Hell SW. Nat Biotechnol, 2003, 21: 1347–1355

    Article  CAS  Google Scholar 

  16. Leung BO, Chou KC. Appl Spectrosc, 2011, 65: 967–980

    Article  CAS  Google Scholar 

  17. Tam J, Merino D. J Neurochem, 2015, 135: 643–658

    Article  CAS  Google Scholar 

  18. Patterson G, Davidson M, Manley S, Lippincott-schwartz J. Annu Rev Phys Chem, 2010, 61: 345–367

    Article  CAS  Google Scholar 

  19. Long BR, Robinson DC, Zhong H. WIREs Syst Biol Med, 2014, 6: 151–168

    Article  CAS  Google Scholar 

  20. Huang B, Babcock H, Zhuang X. Cell, 2010, 143: 1047–1058

    Article  CAS  Google Scholar 

  21. Rust MJ, Bates M, Zhuang X. Nat Meth, 2006, 3: 793–796

    Article  CAS  Google Scholar 

  22. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-schwartz J, Hess HF. Science, 2006, 313: 1642–1645

    Article  CAS  Google Scholar 

  23. Müller T, Schumann C, Kraegeloh A. ChemPhysChem, 2012, 13: 1986–2000

    Article  Google Scholar 

  24. Hou SG, Liang L, Deng SH, Chen JF, Huang Q, Cheng Y, Fan CH. Sci China Chem, 2014, 57: 100–106

    Article  CAS  Google Scholar 

  25. Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, Von middendorff C, Schönle A, Hell SW. Nature, 2008, 457: 1159–1162

    Article  Google Scholar 

  26. Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R, Leutenegger M, Polyakova S, Belov VN, Hell SW, Eggeling C. Biophys J, 2011, 101: 1651–1660

    Article  CAS  Google Scholar 

  27. Hein B, Willig KI, Hell SW. Proc Natl Acad Sci, 2008, 105: 14271–14276

    Article  CAS  Google Scholar 

  28. Mao X, Du J, Huang Q, Fan C, Deng S. Nucl Techn, 2013, 36: 46–53

    Google Scholar 

  29. Jia S, Liang L, Deng S, Hou S, Liu H, Huang Q, Fan C. J Radiat Res Radiat Proc, 2014, 32: 3–11

    Google Scholar 

  30. Shangguo H, Kun W, Lihua W, Qing H, Suhui D. Sci Sin Chim, 2015, 45: 1206–1213

    Article  Google Scholar 

  31. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. Nature, 2006, 440: 935–939

    Article  CAS  Google Scholar 

  32. Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T. Biophys J, 2006, 90: 2843–2851

    Article  CAS  Google Scholar 

  33. Urban NT, Willig KI, Hell SW, Nägerl UV. Biophys J, 2011, 101: 1277–1284

    Article  CAS  Google Scholar 

  34. Chao J, Xing S, Feng B, Wang J, Dai J, Wang L, Li Q. Nucl Sci Tech, 2015, 26: 1–5

    CAS  Google Scholar 

  35. Fu Y, Zhang Z, Li C, Shi Y, Yan X, Fan C. Chinese J Appl Chem, 2010, 27: 125–131

    CAS  Google Scholar 

  36. Ge ZL, Fan CH, Yan H. Chin Sci Bull, 2014, 59: 146–154

    Article  Google Scholar 

  37. Jia S, Chao J, Fan C, Liu H. Prog Chem, 2014, 26: 695–705

    CAS  Google Scholar 

  38. Schmied JJ, Gietl A, Holzmeister P, Forthmann C, Steinhauer C, Dammeyer T, Tinnefeld P. Nat Meth, 2012, 9: 1133–1134

    Article  CAS  Google Scholar 

  39. Beater S, Holzmeister P, Pibiri E, Lalkens B, Tinnefeld P. Phys Chem Chem Phys, 2014, 16: 6990–6996

    Article  CAS  Google Scholar 

  40. Du J, Deng S, Hou S, Qiao L, Chen J, Huang Q, Fan C, Cheng Y, Zhao Y. Chin Opt Lett, 2014, 12: 41

    Google Scholar 

  41. Molenaar C. Embo J, 2003, 22: 6631–6641

    Article  CAS  Google Scholar 

  42. Knecht H, Sawan B, Lichtensztejn D, Lemieux B, Wellinger RJ, Mai S. Leukemia, 2008, 23: 565–573

    Article  Google Scholar 

  43. Saldanha SN, Andrews LG, Tollefsbol TO. Eur J Biochem, 2003, 270: 389–403

    Article  CAS  Google Scholar 

  44. Hillisch A, Lorenz M, Diekmann S. Curr Opin Struc Biol, 2001, 11: 201–207

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Deng, S., Cai, X. et al. Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. Sci. China Chem. 59, 1519–1524 (2016). https://doi.org/10.1007/s11426-016-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0020-9

Keywords

Navigation