Skip to main content
Log in

CO2 solubility in aqueous solutions of N-methyldiethanolamine+piperazine by electrolyte NRTL model

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Accurate modeling of the solubility behavior of CO2 in the aqueous alkanolamine solutions is important to design and optimization of equipment and process. In this work, the thermodynamics of CO2 in aqueous solution of N-methyldiethanolamine (MDEA) and piperazine (PZ) is studied by the electrolyte non-random two liquids (NRTL) model. The chemical equilibrium constants are calculated from the free Gibbs energy of formation, and the Henry’s constants of CO2 in MDEA and PZ are regressed to revise the value in the pure water. New experimental data from literatures are added to the regression process. Therefore, this model should provide a comprehensive thermodynamic representation for the quaternary system with broader ranges and more accurate predictions than previous work. Model results are compared to the experimental vapor-liquid equilibrium (VLE), speciation and heat of absorption data, which show that the model can predict the experimental data with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu HB, Zhang CF, Xu GW. Ind Eng Chem Res, 1999, 38: 4032–4036

    Article  CAS  Google Scholar 

  2. Zhang SJ, Zhang XP, Zhao YS, Zhao GY, Yao XQ, Yao HW. Sci China Ser B-Chem, 2010, 53: 1549–1553

    Article  CAS  Google Scholar 

  3. Kent RL, Eisenberg B. Hydrocarbon Process Int Ed, 1976, 55: 87–90

    CAS  Google Scholar 

  4. Tontiwachwuthikul P, Meisen A, Lim CJ. J Chem Eng Data, 1991, 36: 130–133

    Article  CAS  Google Scholar 

  5. Posey ML, Tapperson KG, Rochelle GT. Gas Sep Purif, 1996, 10: 181–186

    Article  CAS  Google Scholar 

  6. Leung KS, Chan SWK, Wong WSF, Gullett EA, Buttenham S, Hore T, Haji-Sulaiman MZ, Aroua MK, Pervez MI. Gas Sep Purif, 1996, 10: 13–18

    Article  Google Scholar 

  7. Austgen DM, Rochelle GT, Peng X, Chen CC. Ind Eng Chem Res, 1989, 28: 1060–1073

    Article  CAS  Google Scholar 

  8. Li C, Fürst W. Chem Eng Sci, 2000, 55: 2975–2988

    Article  Google Scholar 

  9. Derks PWJ, Hogendoorn JA, Versteeg GF. J Chem Thermodyn, 2010, 42: 151–163

    Article  CAS  Google Scholar 

  10. Deshmukh RD, Mather AE. Chem Eng Sci, 1981, 36: 355–362

    Article  CAS  Google Scholar 

  11. Vahidi M, Matin NS, Goharrokhi M, Jenab MH, Abdi MA, Najibi SH. J Chem Thermodyn, 2009, 41: 1272–1278

    Article  CAS  Google Scholar 

  12. Najibi H, Maleki N. Fluid Phase Equilib, 2013, 354: 298–303

    Article  CAS  Google Scholar 

  13. Pérez-Salado Kamps Á, Xia J, Maurer G. AlChE J, 2003, 49: 2662–2670

    Article  Google Scholar 

  14. Bottger A, Ermatchkov V, Maurer G. J Chem Eng Data, 2009, 54: 1905–1909

    Article  Google Scholar 

  15. Speyer D, Ermatchkov V, Maurer G. J Chem Eng Data, 2009, 55: 283–290

    Article  Google Scholar 

  16. Ermatchkov V, Maurer G. Fluid Phase Equilib, 2011, 302: 338–346

    Article  CAS  Google Scholar 

  17. Bishnoi S. Carbon Dioxide Absorption and Solution Equillibrium in Piperazine Activated Methyldiethanolanine Dissertation of Doctoral Degree. Texas: University of Texas at Austin, 2001

    Google Scholar 

  18. Pinto DDD, Monteiro JGMS, Bersås A, Haug-Warberg T, Svendsen HF. Energy Procedia, 2013, 37: 1613–1620

    Article  CAS  Google Scholar 

  19. Hilliard MD. A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. Dissertation of Doctoral Degree. Texas: University of Texas at Austin, 2008

    Google Scholar 

  20. Aspen Physical Property System, V7.2; Burlington, MA: Aspen Technology, Inc., 2010

  21. Joosten GEH, Danckwerts PV. J Chem Eng Data, 1972, 17: 452–454

    Article  CAS  Google Scholar 

  22. Zhang Y, Que H, Chen CC. Fluid Phase Equilib, 2011, 311: 67–75

    Article  CAS  Google Scholar 

  23. Chen CC, Britt HI, Boston JF, Evans LB. AlChE J, 1979, 25: 820–831

    Article  CAS  Google Scholar 

  24. Xu S, Qing S, Zhen Z, Zhang C. Fluid Phase Equilib, 1991, 67: 197–201

    Article  CAS  Google Scholar 

  25. Voutsas E, Vrachnos A, Magoulas K. Fluid Phase Equilib, 2004, 224: 193–197

    Article  CAS  Google Scholar 

  26. Kim I, Svendsen HF, Børresen E. J Chem Eng Data, 2008, 53: 2521–2531

    Article  CAS  Google Scholar 

  27. Chakma A, Meisen A. Ind Eng Chem Res, 1987, 26: 2461–2466

    Article  CAS  Google Scholar 

  28. Macgregor RJ, Mather AE. Can J Chem Eng, 1991, 69: 1357–1366

    Article  CAS  Google Scholar 

  29. Kuranov G, Rumpf B, Smirnova NA, Maurer G. Ind Eng Chem Res, 1996, 35: 1959–1966

    Article  CAS  Google Scholar 

  30. Kamps ÁPS, Balaban A, Jödecke M, Kuranov G, Smirnova NA, Maurer G. Ind Eng Chem Res, 2001, 40: 696–706

    Article  Google Scholar 

  31. Ermatchkov V, Kamps ÁPS, Maurer G. Ind Eng Chem Res, 2006, 45: 6081–6091

    Article  CAS  Google Scholar 

  32. Sidi-Boumedine R, Horstmann S, Fischer K, Provost E, Furst W, Gmehling J. Fluid Phase Equilib, 2004, 218: 85–94

    Article  CAS  Google Scholar 

  33. Ma’mun S, Nilsen R, Svendsen HF, Juliussen O. J Chem Eng Data, 2005, 50: 630–634

    Article  Google Scholar 

  34. Dawodu OF, Meisen A. J Chem Eng Data, 1994, 39: 548–552

    Article  CAS  Google Scholar 

  35. Jou FY, Mather AE, Otto FD. Ind Eng Chem Proc Des Dev, 1982, 21: 539–544

    Article  CAS  Google Scholar 

  36. Jou FY, Carroll JJ, Mather AE, Otto FD. Can J Chem Eng, 1993, 71: 264–268

    Article  CAS  Google Scholar 

  37. Ermatchkov V, Kamps ÁPS, Speyer D, Maurer G. J Chem Eng Data, 2006, 51: 1788–1796

    Article  CAS  Google Scholar 

  38. Bishnoi S, Rochelle GT. Chem Eng Sci, 2000, 55: 5531–5543

    Article  CAS  Google Scholar 

  39. Kadiwala S, Rayer AV, Henni A. Fluid Phase Equilib, 2010, 292: 20–28

    Article  CAS  Google Scholar 

  40. Xu Q. Thermodynamics of CO2 loaded aqueous amines. Dissertation of Doctoral Degree. Texas: University of Texas at Austin, 2011

    Google Scholar 

  41. Dugas RE, Rochelle GT. J Chem Eng Data, 2011, 56: 2187–2195

    Article  CAS  Google Scholar 

  42. Ali BS, Aroua MK. Int J Thermophys, 2004, 25: 1863–1870

    Article  CAS  Google Scholar 

  43. Xu GW, Zhang CF, Qin SJ, Gao WH, Liu HB. Ind Eng Chem Res, 1998, 37: 1473–1477

    Article  CAS  Google Scholar 

  44. Nguyen T. Amine volatility in CO2 capture. Dissertation of Doctoral Degree. Texas: University of Texas at Austin, 2013

    Google Scholar 

  45. Bottinger W, Maiwald M, Hasse H. Ind Eng Chem Res, 2008, 47: 7917–7926

    Article  CAS  Google Scholar 

  46. Svensson H, Hulteberg C, Karlsson HT. Int J Greenh Gas Con, 2013, 17: 89–98

    Article  CAS  Google Scholar 

  47. Zhang Y, Chen CC. Ind Eng Chem Res, 2010, 50: 163–175

    Article  Google Scholar 

  48. Frailie P, Plaza J, van Wagener D, Rochelle GT. Energy Procedia, 2011, 4: 35–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoqiong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Gong, M., Dong, X. et al. CO2 solubility in aqueous solutions of N-methyldiethanolamine+piperazine by electrolyte NRTL model. Sci. China Chem. 59, 360–369 (2016). https://doi.org/10.1007/s11426-015-5508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5508-5

Keywords

Navigation