Skip to main content
Log in

A novel method to anchor methanesulfonic acid in silica matrix

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Methanesulfonic acid (MSA) was successfully immobilized in silica, leading to a novel and environmentally friendly solid acid catalyst SMSA. The most important feature of SMSA is that anhydrous formic acid is used to hydrolysis of tetraethylorthosilicate (TEOS). No water was added in the whole preparation. Therefore, MSA could be anchored in silica matrix more effectively instead of being dissolved in water. This new organic/inorganic hybrid catalyst was characterized by powder X-ray diffraction (XRD), energy dispersive spectrum (EDS), N2 adsorption-desorption analyzer, thermogravimetric analysis (TGA-DSC) and pyridine-FTIR. The catalytic activity was tested by alkylation of olefins and aromatics. High concentration acid sites, both Lewis and Brønsted, abundant porosity and large surface area enabled the highest activity for SMSA, among MCM-22, ZSM-5 and industrial acidity clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Khaligh NG, Shirini F. J Mol Catal A-Chem, 2011, 348: 20–29

    Article  CAS  Google Scholar 

  2. Ronchin L, Vavasori A, Toniolo L. J Mol Catal A-Chem, 2012, 355: 134–141

    Article  CAS  Google Scholar 

  3. Gal YS, Jin SH, Park JW, Lim KT. J Ind Eng Chem, 2011, 17: 282–286

    Article  CAS  Google Scholar 

  4. Jang HS, Kim YH, Kim YO, Lee SM, Kim JW, Chung WJ, Lee YS. J Ind Eng Chem, 2014, 20: 29–36

    Article  CAS  Google Scholar 

  5. Jeong K, Chung WY, Kye YS, Kim D. J Ind Eng Chem, 2011, 17: 427–429

    Article  CAS  Google Scholar 

  6. Gernon MD, Wu M, Buszta T, Janney P. Green Chem, 1999, 3: 127–140

    Article  Google Scholar 

  7. Tian Y, Meng X, Duan JY, Shi L. Ind Eng Chem Res, 2012, 51: 13627–13631

    Article  CAS  Google Scholar 

  8. Long XL, Wang ZH, Wu SQ, Wu SM, Lv HF, Yuan WK. J Ind Eng Chem, 2014, 20: 100–107

    Article  CAS  Google Scholar 

  9. Sabour B, Peyrovi MH, Hamoule T, Rashidzadeh M. J Ind Eng Chem, 2014, 20: 222–227

    Article  CAS  Google Scholar 

  10. Hua D, Li P, Wu Y, Chen Y, Yang M, Dang J, Xie Q, Liu J, Sun XY. J Ind Eng Chem, 2013, 19: 1395–1399

    Article  CAS  Google Scholar 

  11. Kim DW, Kim CW, Koh JC, Park DW. J Ind Eng Chem, 2010, 16: 474–478

    Article  CAS  Google Scholar 

  12. Cheetham AK, Rao CNR, Feller RK. Chem Commun, 2006: 4780–4795

    Google Scholar 

  13. Hoffmann F, Cornelius M, Morell J, Froeba M. Angew Chem Int Ed, 2006, 45: 3216–3251

    Article  CAS  Google Scholar 

  14. Schubert U. Chem Soc Rev, 2011, 40: 575–582

    Article  CAS  Google Scholar 

  15. Lin Z, Huang L, Ling Q, Chen H, Zhao C. J Mol Catal A-Chem, 2012, 365: 73–79

    Article  CAS  Google Scholar 

  16. Allen HC, Raymond EA, Richmond GL. J Phys Chem A, 2011, 105: 1649–1655

    Article  Google Scholar 

  17. Shen G, Horgan A, Levicky R. Colloid Surface B, 2004, 35: 59–65

    Article  Google Scholar 

  18. Givan A, Loewenschuss A, Nielsen CJ. J Mol Struct, 2005, 748: 77–90

    Article  CAS  Google Scholar 

  19. Givan A, Loewenschuss A, Nielsen CJ. J Phys Chem A, 2000, 104: 3441–3445

    Article  CAS  Google Scholar 

  20. Nguyen C, Sonwane CG, Bhatia SK, Do DD. Langmuir, 1998, 14: 4950–4952

    Article  CAS  Google Scholar 

  21. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW. J Am Chem Soc, 1992, 114: 10834–10843

    Article  CAS  Google Scholar 

  22. Gorsd M, Pizzio L, Blanco M. Appl Catal A-Gen, 2011, 400: 91–98

    Article  CAS  Google Scholar 

  23. Vejayakumaran P, Rahman IA, Sipaut CS, Ismail J, Chee CK. J Colloid Interf Sci, 2008, 328: 81–91

    Article  CAS  Google Scholar 

  24. Kalita P, Gupta NM, Kumar R. J Catal, 2007, 245: 338–347

    Article  CAS  Google Scholar 

  25. Vinh-Thang H, Huang Q, Ungureanu A, Eic M, Trong-On D, Kaliaguine S. Micropor Mesopor Mat, 2006, 92: 117–128

    Article  Google Scholar 

  26. Joshi J, Mishra MK, Srinivasarao M. Can J Chem, 2011, 89: 663–670

    Article  CAS  Google Scholar 

  27. Pârvulescu AN, Gagea BC, Pârvulescu V, Pârvulescu VI, Poncelet G, Grange P. Catal Today, 2002, 73: 177–185

    Article  Google Scholar 

  28. Pârvulescu AN, Gagea BC, Poncelet G, Pârvulescu VI. Appl Catal A-Gen, 2006, 301: 133–137

    Article  Google Scholar 

  29. de Angelis A, Flego C, Ingallina P, Montanari L, Clerici MG, Carati C, Perego C. Catal Today, 2001, 65: 363–371

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Yao, J. & Shi, L. A novel method to anchor methanesulfonic acid in silica matrix. Sci. China Chem. 59, 370–379 (2016). https://doi.org/10.1007/s11426-015-5506-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5506-7

Keywords

Navigation