Skip to main content
Log in

Molecular behavior of the aptamer HJ24 self-assembled on highly oriented pyrolytic graphite (HOPG)

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nucleic acid sensing analysis has been widely applied to the fields of food quality control, environmental monitoring, and medical diagnosis. A key step in developing effective DNA-based electrochemical biosensors is to obtain a biorecognition layer on the biosensor, which can be influenced by many factors. Hence, we constructed a series of HJ24 layers on highly oriented pyrolytic graphite to investigate the relation between the configuration of the adsorbed probe HJ24 and the redox property using atomic force microscopy and voltammetry. We used HJ24 for its diagnostic value as it specifically recognizes the SH2 domain-containing phosphatase, a critical contributor in many important signaling pathways. The results demonstrated that increasing K ions induced G-quartet oxidation peak occurrence/increase ([K+]⩽400 mmol/L), and also resulted in the formation of more compact single strand sheets ([K+]⩽300 mmol/L). Moreover, transitions of molecule configurations and redox currents of G-quartets were observed at low concentration [K+]=12 mmol/L, which may indicate the appearance of new configurations under this condition. Besides, by analyzing atomic force microscopy (AFM) images, it was found that the different adsorbed configurations are correlated with the HJ24 concentration, the basal configuration, and the linker group on the HJ24 sequence. This information may be useful for understanding the adsorption process of HJ24 as well as for the further development of practical applications for HJ24 films on DNA electrochemical sensors, and may ultimately help improve the diagnosis and treatment of patients with SHP2-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gunkel-Grabole G, Sigg S, Lomora M, Lörcher S, Palivan CG, Meier WP. Biomater Sci, 2015, 3: 25–40

    Article  CAS  Google Scholar 

  2. Dzieciol AJ, Mann S. Chem Soc Rev, 2012, 41: 79–85

    Article  CAS  Google Scholar 

  3. Zhan P, Jiang Q, Wang ZG, Li N, Yu H, Ding B. Chem Med Chem, 2014, 9: 2013–2020

    Article  CAS  Google Scholar 

  4. Zhao WW, Xu JJ, Chen HY. Chem Rev, 2014, 114: 7421–7441

    Article  CAS  Google Scholar 

  5. Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C. Angew Chem Int Ed, 2015, 54: 2151–2155

    Article  CAS  Google Scholar 

  6. Kim MG, Shon Y, Lee J, Byun Y, Choi BS, Kim YB, Oh YK. Biomaterials, 2014, 35: 2999–3004

    Article  CAS  Google Scholar 

  7. Baaske MD, Foreman MR, Vollmer F. Nat Nano, 2014, 9: 933–939

    Article  CAS  Google Scholar 

  8. Wei W, Ni Q, Pu Y, Yin L, Liu S. J Electroanal Chem, 2014, 714: 25–29

    Article  Google Scholar 

  9. Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, Castillo JR. Biosens Bioelectron, 2013, 49: 146–158

    Article  CAS  Google Scholar 

  10. Li M, Li YT, Li DW, Long YT. Anal Chim Acta, 2012, 734: 31–44

    Article  CAS  Google Scholar 

  11. Laschi S, Tombelli S, Palchetti I, Mascini M, Marrazza G. New affinity biosensors as diagnostic tools for tumour marker analysis. In: Baldini F, Amico A, Natale C, Siciliano P, Seeber R, Stefano L, Bizzarri R, Ando B, Eds. Sensors: Proceedings of the First National Conference on Sensors. Rome: Springer, 2014. 19–23

    Chapter  Google Scholar 

  12. Biffi G, Tannahill D, Mc Cafferty J, Balasubramanian S. Nat Chem, 2013, 5: 182–186

    Article  CAS  Google Scholar 

  13. Bochman ML, Paeschke K, Zakian VA. Nat Rev Genet, 2012, 13: 770–780

    Article  CAS  Google Scholar 

  14. Onel B, Lin C, Yang D. Sci China Chem, 2014, 57: 1605–1614

    Article  CAS  Google Scholar 

  15. Yatsunyk LA, Mendoza O, Mergny JL. Acc Chem Res, 2014, 47: 1836–1844

    Article  CAS  Google Scholar 

  16. Hu J, Wu J, Li C, Zhu L, Zhang WY, Kong G, Lu Z, Yang CJ. Chem Bio Chem, 2011, 12: 424–430

    Article  CAS  Google Scholar 

  17. Heuberger J, Kosel F, Qi J, Grossmann KS, Rajewsky K, Birchmeier W. Proc Natl Acad Sci, 2014, 111: 3472–3477

    Article  CAS  Google Scholar 

  18. Luo H, Tang C, Yang X, Zhou X. Med Chem, 2014, 4: 435–438

    Article  Google Scholar 

  19. Song Y, Lian W, Zhao S, Wang L, Li Z. Microsc Res Tech, 2010, 73: 51–57

    CAS  Google Scholar 

  20. Paquim AM, Oretskaya TS, Brett AM. Biophys Chem, 2006, 121: 131–141

    Article  Google Scholar 

  21. Chiorcea-Paquim AM, Santos PV, Oliveira-Brett AM. Electrochim Acta, 2013, 110: 599–607

    Article  CAS  Google Scholar 

  22. Coveney PV, Swadling JB, Wattis JA, Greenwell HC. Chem Soc Rev, 2012, 41: 5430–5446

    Article  CAS  Google Scholar 

  23. Brett CM, Brett AM, Serrano SH. J Electroanal Chem, 1994, 366: 225–231

    Article  CAS  Google Scholar 

  24. Lyubchenko Y, Gall A, Shlyakhtenko L. Visualization of DNA and protein-DNA complexes with atomic force microscopy. In: Kuo J, Ed. Electron Microscopy. Humana Press, 2014, 1117: 367–384

    CAS  Google Scholar 

  25. Chiorcea-Paquim AM, Santos PV, Eritja R, Oliveira-Brett AM. Phys Chem Chem Phys, 2013, 15: 9117–9124

    Article  CAS  Google Scholar 

  26. Neaves KJ, Huppert JL, Henderson RM, Edwardson JM. Nucleic Acids Res, 2009, 37: 6269–6275

    Article  CAS  Google Scholar 

  27. Kang C, Zhang X, Ratliff R, Moyzis R, Rich A. Nature, 1992, 356: 126–131

    Article  CAS  Google Scholar 

  28. Lee L, Cavalieri F, Johnston AP, Caruso F. Langmuir, 2009, 26: 3415–3422

    Article  Google Scholar 

  29. Balint Z, Nagy K, Laczko I, Bottka S, Vegh GA, Szegletes Z, Váró G. J Phys Chem C, 2007, 111: 17032–17037

    Article  CAS  Google Scholar 

  30. Rodrigues Pontinha AD, Chiorcea-Paquim AM, Eritja R, Oliveira-Brett AM. Anal Chem, 2014, 86: 5851–5857

    Article  CAS  Google Scholar 

  31. Rosario R, Mutharasan R. Rev Anal Chem, 2014, 33: 213–230

    Article  CAS  Google Scholar 

  32. Zhao XQ, Wu J, Liang JH, Yan JW, Zhu Z, Yang CJ, Mao B. J Phys Chem B, 2012, 116: 11397–11404

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqin Zhao or Bingwei Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Huang, Y., Yang, C.J. et al. Molecular behavior of the aptamer HJ24 self-assembled on highly oriented pyrolytic graphite (HOPG). Sci. China Chem. 58, 1858–1865 (2015). https://doi.org/10.1007/s11426-015-5465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5465-z

Keywords

Navigation