Skip to main content
Log in

Application of named reactions in polymer synthesis

  • Reviews
  • SPECIAL TOPIC Progress in Synthetic Polymer Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In recent years, with the rapid development of polymer science, the application of classical named reactions has transferred from small-molecule compounds to polymers. The versatility of named reactions in terms of monomer selection, solvent envi-ronment,reaction temperature, and post-modification permits the synthesis of sophisticated macromolecular structures under conditions where other reaction processes will not operate. In this review, we divided the named reactions employed in polymer-chain synthesis into three types: transition metal-catalyzed cross-coupling reactions, metal-free cross-coupling reactions,and multi-components reactions. Thus, we focused our discussion on the progress in the utilization of these named reactionsin polymer synthesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kürti L, Czakó B. Strategic Applications of Named Reaction in Organic Synthesis. Amsterdam: Elsevier, 2005

    Google Scholar 

  2. Lutz JF. A controlled sequence of events. Nat Chem, 2010, 2: 84–85

    Article  CAS  Google Scholar 

  3. Szwarc M. “Living” polymers. Nature, 1956, 176: 1168–1169

    Article  Google Scholar 

  4. Webster OW. The discovery and commercialization of group transfer polymerization. J Polym Sci Polym Chem, 2000, 38: 2855–2860

    Article  CAS  Google Scholar 

  5. Endo T. General mechanisms in ring-opening polymerization. In:Dubois P, Coulembier O, Raquez JM, Eds. Handbook of Ring-Opening Polymerization K GaA. Weinheim: Wiley-VCH VerlagGmbH & Co., 2009. 53

    Chapter  Google Scholar 

  6. Goethals EJ, Du Prez F. Carbocationic polymerizations. Prog Polym Sci, 2007, 32: 220–246

    Article  CAS  Google Scholar 

  7. Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci, 2007, 32: 1–29

    Article  CAS  Google Scholar 

  8. Braunecker WA, Matyjaszewski K. Controlled/living radical polymerization:features, developments, and perspectives. Prog Polym Sci, 2007, 32: 93–146

    Article  CAS  Google Scholar 

  9. Jiang XY, Jiang X, Lu GL, Feng C, Huang XY. The first amphiphilicgraft copolymer bearing a hydrophilic poly(2-hydroxylethyl acrylate)backbone synthesized by successive RAFT and ATRP. Polym Chem, 2014, 5: 4915–4925

    Article  CAS  Google Scholar 

  10. Jiang X, Feng C, Lu GL, Huang XY. Thermoresponsive homopolymertunable by pH and CO2. ACS Macro Lett, 2014, 3: 1121–1125

    Article  CAS  Google Scholar 

  11. Zhang YN, Wang GW, Huang JL. Synthesis of macrocyclicpoly(ethylene oxide) and polystyrene via Glaser coupling reaction. Macromolecules, 2010, 43: 10343–10347

    Article  CAS  Google Scholar 

  12. Yao WQ, Li YJ, Feng C, Lu GL, Huang XY. Synthesis of a sunshapedamphiphilic copolymer consisting of a cyclic perfluorocyclobutylaryl ether-based backbone and lateral PMAA side chains. RSC Adv, 2014, 4: 52105–52116

    Article  CAS  Google Scholar 

  13. Lu GL, Liu H, Gao HF, Feng C, Li YJ, Huang XY. Construction ofsemi-fluorinated amphiphilic graft copolymer bearing poly(2-methyl-1,4-bistrifluoro-vinyloxybenzene) backbone and poly(ethylene glycol)side chains via the grafting-onto strategy. RSC Adv, 2015, 5: 39668–39676

    Article  CAS  Google Scholar 

  14. Ma H, Jen AKY, Dalton LR. Polymer-based optical waveguides:materials, processing, and devices. Adv Mater, 2002, 14: 1339–1365

    Article  CAS  Google Scholar 

  15. Yang L, Zhou H, Price SC, You W. Parallel-like bulk heterojunctionpolymer solar cells. J Am Chem Soc, 2012, 134: 5432–5435

    Article  CAS  Google Scholar 

  16. Zalar P, Kamkar D, Naik R, Ouchen F, Grote JG, Bazan GC, Nguyen TQ. DNA Electron injection interlayers for polymer light-emittingdiodes. J Am Chem Soc, 2011, 133: 11010–11013

    Article  CAS  Google Scholar 

  17. Wang S, Kappl M, Liebewirth I, Müller M, Kirchhoff K, Pisula W, Müllen K. Organic field-effect transistors based on gighly orderedsingle polymer fibers. Adv Mater, 2012, 24: 417–420

    Article  CAS  Google Scholar 

  18. Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-basedorganic solar cells. Chem Rev, 2007, 107: 1324–1338

    Article  Google Scholar 

  19. Chochos CL, Choulis SA. How the structural deviations on thebackbone of conjugated polymers influence their optoelectronicproperties and photovoltaic performance. Prog Polym Sci, 2011, 36: 1326–1414

    Article  CAS  Google Scholar 

  20. Yokozawa T, Yokoyama A. Chain-growth condensation polymerizationfor the synthesis of well-defined condensation polymers and?-conjugated polymers. Chem Rev, 2009, 109: 5595–5619

    Article  CAS  Google Scholar 

  21. Xu S, Kim EH, Wei A, Negishi EI. Pd-and Ni-catalyzed crosscouplingreactions in the synthesis of organic electronic materials. SciTechnol Adv Mater, 2014, 15: 1–23

    CAS  Google Scholar 

  22. Sheina EE, Liu J, Iovu MC, Laird DW, McCullough RD. Chaingrowth mechanism for regioregular nickel-initiated cross-couplingpoly merizations. Macromolecules, 2004, 37: 3526–3528

    Article  CAS  Google Scholar 

  23. Iovu MC, Sheina EE, Gil RR, McCullough RD. Experimental evidencefor the quasi-“living” nature of the grignard metathesis methodfor the synthesis of regioregular poly(3-alkylthiophenes). Macromolecules, 2005, 38: 8649–8656

    Article  CAS  Google Scholar 

  24. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerizationfor poly(3-hexylthiophene) with a defined molecular weight anda low polydispersity. Macromolecules, 2004, 37: 1169–1171

    Article  CAS  Google Scholar 

  25. Miyakoshi R, Yokoyama A, Yokozawa T. Catalyst-transfer polycondensation.Mechanism of Ni-catalyzed chain-growth polymerizationleading to well-defined poly(3-hexylthiophene). J Am Chem Soc, 2005, 127: 17542–17547

    Article  CAS  Google Scholar 

  26. Tamao K, Sumitani K, Kumada M. Selective carbon-carbon bondformation by cross-coupling of Grignard reagents with organic halides.Catalysis by nickel-phosphine complexes. J Am Chem Soc, 1972, 94: 4374–4376

    Article  CAS  Google Scholar 

  27. Corriu RJP, Masse JP. Activation of Grignard reagents by transitionmetalcomplexes. A new and simple synthesis of trans-stilbenes andpolyphenyls. J Chem Soc Chem Commun, 1972: 144a

    Google Scholar 

  28. Kiriy A, Senkovskyy V, Sommer M. Kumada catalyst-transfer polycondensation:mechanism, opportunities, and challenges. MacromolRapid Commun, 2011, 32: 1503–1517

    CAS  Google Scholar 

  29. Pammer F, Passlack U. Head-to-tail regioregular polythiazole preparedvia Kumada-coupling polycondensation. ACS Macro Lett, 2014, 3: 170–174

    Article  CAS  Google Scholar 

  30. Miyaura N, Yamada K, Suzuki A. A new stereospecific crosscouplingby the palladium-catalyzed reaction of 1-alkenylboraneswith 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett, 1979, 20: 3437–3440

    Article  Google Scholar 

  31. Rehahn M, Schlüter AD, Wegner G, Feast WJ. Soluble poly(paraphenylene)s. 2. Improved synthesis of poly(para-2,5-di-n-hexylphenylene)via Pd-catalysed coupling of 4-bromo-2,5-di-n-hexylbenzeneboronicacid. Polymer, 1989, 30: 1060–1062

    Article  CAS  Google Scholar 

  32. Sakamoto J, Rehahn M, Wegner G, Schlüter AD. Suzuki polycondensation: polyarylenes. Macromol Rapid Commun, 2009, 30: 653–687

    Article  CAS  Google Scholar 

  33. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K. The influence of morphology on high-performancepolymer field-effect transistors. Adv Mater, 2009, 21: 209–212

    Article  CAS  Google Scholar 

  34. Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K. Ultrahigh mobility in polymerfield-effect transistors by design. J Am Chem Soc, 2011, 133: 2605–2612

    Article  CAS  Google Scholar 

  35. Dong CG, Hu QS. Preferential oxidative addition in palladium(0)-catalyzed Suzuki cross-coupling reactions of dihaloarenes with arylboronicacids. J Am Chem Soc, 2005, 127: 10006–10007

    Article  CAS  Google Scholar 

  36. Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis ofpolyfluorene via Suzuki-Miyaura coupling reaction from externallyadded initiator unit. J Am Chem Soc, 2007, 129: 7236–7237

    Article  CAS  Google Scholar 

  37. Zhang HH, Xing CH, Hu QS, Hong K. Controlled Pd(0)/t-Bu3PcatalyzedSuzuki cross-coupling polymerization of AB-type monomerswith ArPd(t-Bu3P)X or Pd2(dba)3/t-Bu3P/ArX as the initiator. Macromolecules, 2015, 48: 967–978

    Article  CAS  Google Scholar 

  38. Azarian D, Dua SS, Eaborn C, Walton DRM. Reactions of organichalides with R3 MMR3 compounds (M=Si,Ge,Sn) in the presence oftetrakis (triarylphosphine) palladium. J Organomet Chem, 1976, 117: C55–C57

    Article  CAS  Google Scholar 

  39. Kosugi M, Sasazawa K, Shimizu Y, Migita T. Reactions of allyltincompounds III. Allylation of aromatic halides with allyltributyltin inthe research of tetrakis (triphenylphosphine) palladium(0). Chem Lett, 1977: 301–302

    Google Scholar 

  40. Milstein D, Stille JK. A general, selective, and facile method for ketonesynthesis from acid chlorides and organotin compounds catalyzedby palladium. J Am Chem Soc, 1978, 100: 3636–3638

    Article  CAS  Google Scholar 

  41. Carsten B, He F, Son JH, Xu T, Yu L. Stille polycondensation forsynthesis of functional materials. Chem Rev, 2011, 111: 1493–1528

    Article  CAS  Google Scholar 

  42. Kranthiraja K, Gunasekar K, Cho W, Song M, Park YG, Lee JY, Shin Y, Kang IN, Kim A, Kim H, Kim BS, Jin SH. Alkoxyphenylthiophenelinked benzodithiophene based medium band gap polymersfor organic photovoltaics: efficiency improvement upon methanoltreatment depends on the planarity of backbone. Macromolecules, 2014, 47: 7060–7069

    Article  CAS  Google Scholar 

  43. Qiu Y, Mohin J, Tsai CH, Tristram-Nagle S, Gil RR. Kowalewski T, Noonan KJT. Stille catalyst-transfer polycondensation using Pd-PEPPSI-IPr for high-molecular-weight regioregular poly(3-hexylthiophene). Macromol Rapid Commun, 2015, 36: 840–844

    Article  CAS  Google Scholar 

  44. King AO, Okukado N, Negishi E. Highly general stereo-, regio-, andchemo-selective synthesis of terminal and internal conjugated enynesby the Pd-catalysed reaction of alkynylzinc reagents with alkenylhalides. J Chem Soc Chem Commun, 1977: 683–684

    Google Scholar 

  45. Tkachov R, Senkovskyy V, Beryozkina T, Boyko K, Bakulev V, Lederer A, Sahre K, Voit B, Kiriy A. Palladium-catalyzed chain-growthpolycondensation of AB-type monomers: high catalyst turnover andpolymerization rates. Angew Chem Int Ed, 2014, 53: 2402–2407

    Article  CAS  Google Scholar 

  46. Mizoroki T, Mori K, Ozaki A. Arylation of olefin with aryl iodidecatalyzed by palladium. Bull Chem Soc Jpn, 1971, 44: 581

    Article  CAS  Google Scholar 

  47. Heck RF, Nolley JP. Palladium-catalyzed vinylic hydrogen substitutionreactions with aryl, benzyl, and styryl halides. J Org Chem, 1972, 37: 2320–2322

    Article  CAS  Google Scholar 

  48. Beletskaya IP, Cheprakov AV. The Heck reaction as a sharpeningstone of palladium catalysis. Chem Rev, 2000, 100: 3009–3066

    Article  CAS  Google Scholar 

  49. Tierze LF, Kettschau G, Heuschert U, Nordmann G. Highly efficientsynthesis of linear pyrrole oligomers by twofold Heck reactions. Chem Eur J, 2001, 7: 368–373

    Article  Google Scholar 

  50. Nicolaou KC, Bulger PG, Sarlah D. Palladium-catalyzed crosscouplingreactions in total synthesis. Angew Chem Int Ed, 2005, 44: 4442–4489

    Article  CAS  Google Scholar 

  51. Li J, Jeong S, Esser L, Harran PG. Total synthesis of nominal diazonamides-part 1: convergent preparation of the structure proposed for(-)-diazonamide A. Angew Chem Int Ed, 2001, 40: 4765–4769

    Article  CAS  Google Scholar 

  52. Parvez MM, Haraguchi N, Itsuno S. Synthesis of cinchona alkaloidderivedchiral polymers by Mizoroki-Heck polymerization and theirapplication to asymmetric catalysis. Macromolecules, 2014, 47: 1922–1928

    Article  CAS  Google Scholar 

  53. Littke AF, Fu GC. A versatile catalyst for Heck reactions of arylchlorides and aryl bromides under mild conditions. J Am Chem Soc, 2001, 123: 6989–7000

    Article  CAS  Google Scholar 

  54. Nojima M, Saito R, Ohta Y, Yokozawa T. I nvestigation of Mizoroki-Heck coupling polymerization as a catalyst-transfer condensationpolymerization for synthesis of poly(p-phenylenevinylene). J PolymSci Polym Chem, 2015, 53: 543–551

    Article  CAS  Google Scholar 

  55. Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis ofacetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes,iodoarenes and bromopyridines. Tetrahedron Lett, 1975, 16: 4467–4470

    Article  Google Scholar 

  56. Sogawa H, Shiotsuki M, Sanda F. Synthesis and photoresponse ofhelically folded poly(phenyleneethynylene)s bearing azobenzenemoieties in the main chains. Macromolecules, 2013, 46: 4378–4387

    Article  CAS  Google Scholar 

  57. Michael A. On the addition of sodium acetacetic ether and analogoussodium compounds to unsaturated organic ethers. Am Chem J, 1887, 9: 115

    Google Scholar 

  58. Mather BD, Viswanathan K, Miller KM, Long TE. Michael additionreactions in macromolecular design for emerging technologies. ProgPolym Sci, 2006, 31: 487–531

    CAS  Google Scholar 

  59. Ferrui P. Poly(amidoamine)s: past, present, and perspectives. J PolymSci Polym Chem, 2013, 51: 2319–2353

    Article  Google Scholar 

  60. Cohen S, Coue G, Beno D, Korenstein R, Engbersen JFJ. Bioreduciblepoly(amidoamine)s as carriers for intracellular protein delivery tointestinal cells. Biomaterials, 2012, 33: 614–623

    Article  CAS  Google Scholar 

  61. Fang L, Zhang H, Li Z, Zhang Y, Zhang Y, Zhang H. Synthesis ofreactive azobenzene main-chain liquid crystalline polymers via Michaeladdition polymerization and photomechanical effects of theirsupramolecular hydrogen-bonded fibers. Macromolecules, 2013, 46: 7650–7660

    Article  CAS  Google Scholar 

  62. Martineau C, Blanchard P, Rondeau D, Delaunay J, Roncali J. Synthesisand electronic properties of adducts of oligothienylenevinylenesand fullerene C60. Adv Mater, 2002, 14: 283–287

    Article  CAS  Google Scholar 

  63. Wetering KVD, Brochon C, Ngov C, Hadziioannou G. Design andsynthesis of a low band gap conjugated macroinitiator: toward rodcoildonor-acceptor block copolymers. Macromolecules, 2006, 39: 4289–4297

    Article  Google Scholar 

  64. Intemann JJ, Mike JF, Cai M, Bose S, Xiao T, Mauldin TC, Roggers RA, Shinar J, Shinar R, Jeffries-EL M. Synthesis and characterizationof poly(9,9-dialkylfluorenevinylene benzobisoxazoles): new solutionprocessableelectron-accepting conjugated polymers. Macromolecules, 2011, 44: 248–255

    Article  CAS  Google Scholar 

  65. Gandini A. The furan/maleimide Diels-Alder reaction: a versatileclick-unclick tool in macromolecular synthesis. Prog Polym Sci, 2013,38: 1–29

    Article  CAS  Google Scholar 

  66. Satoh H, Mineshima A, Nakamura T, Teramoto N, Shibata M. Thermo-reversible Diels-Alder polymerization of difurfurylidene diglyceroland bismaleimide. React Funct Polym, 2014, 76: 49–56

    Article  CAS  Google Scholar 

  67. Chen Z, Amara JP, Thomas SW, Swager TM. Synthesis of a novelpoly(iptycene) ladder polymer. Macromolecules, 2006, 39: 3202–3209

    Article  CAS  Google Scholar 

  68. Dibble DJ, Umerani MJ, Mazaheripour A, Park YS, Ziller JW, Gorodetsky AA. An aza-Diels-Alder route to polyquinolines. Macromolecules, 2015, 48: 557–561

    Article  CAS  Google Scholar 

  69. Ji S, Bruchmann B, Klok HA. Synthesis of side-chain functionalpolyesters via Baylis-Hillman polymerization. Macromolecules, 2011,44: 5218–5226

    Article  CAS  Google Scholar 

  70. Jones RR, Bergman RG. p-Benzyne. Generation as an intermediate ina thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. J Am Chem Soc, 1972, 94: 660–661

    Article  CAS  Google Scholar 

  71. Kar M, Basak A. Design, synthesis, and biological activity ofunnatural enediynes and related analogues equipped with pHdependentor phototriggering Devices. Chem Rev, 2007, 107: 2861–2890

    Article  CAS  Google Scholar 

  72. John JA, Tour JM. Synthesis of polyphenylenes and polynaphthalenesby thermolysis of enediynes and dialkynylbenzenes. J AmChem Soc, 1994, 116: 5011–5012

    Article  CAS  Google Scholar 

  73. Xiao Y, Hu A. Bergman cyclization in polymer chemistry and materialscience. Macromol Rapid Commun, 2011, 32: 1688–1698

    Article  CAS  Google Scholar 

  74. Cheng X, Ma J, Zhi J, Yang X, Hu A. Synthesis of novel “Rod-Coil”brush polymers with conjugated backbones through Bergmancyclization. Macromolecules, 2010, 43: 909–913

    Article  CAS  Google Scholar 

  75. Ma J, Ma X, Deng S, Li F, Hu A. Synthesis of dendronized polymersthrough Bergman cyclization of enediyne-containing Frechet-typedendrimers. J Polym Sci Polym Chem, 2011, 49: 1368–1375

    Article  CAS  Google Scholar 

  76. Sun S, Zhu C, Song D, Li F, Hu A. Preparation of conjugated polyphenylenesfrom maleimide-based enediynes through thermaltriggeredBergman cyclization polymerization. Polym Chem, 2014, 5: 1241–1247

    Article  CAS  Google Scholar 

  77. Miao C, Zhi J, Sun S, Yang X, Hu A. Formation of conjugated polynaphthalenevia Bergman cyclization. J Polym Sci Polym Chem, 2010, 48: 2187–2193

    Article  CAS  Google Scholar 

  78. Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. On-surfaceformation of one-dimensional polyphenylene through Bergman cyclization. J Am Chem Soc, 2013, 135: 8448–8451

    Article  CAS  Google Scholar 

  79. Zhu J, Bienaymé H. Multicomponent Reactions. Weinheim: Wiley-VCH, 2005

    Book  Google Scholar 

  80. Brauch S, van Berkel SS, Westermann B. Higher-order multicomponentreactions: beyond four reactants. Chem Soc Rev, 2013, 42: 4948–4962

    Article  CAS  Google Scholar 

  81. Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. A new insight into theBiginelli reaction: the dawn of multicomponent click chemistry. Polym Chem, 2013, 4: 5395–5400

    Article  CAS  Google Scholar 

  82. Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L. “ One pot” synthe sis of well-defined poly(aminophosphonate)s: time for the Kabachnik-Fields reaction on the stage of polymer chemistry. Polym Chem, 2014, 5: 1857–1862

    Article  CAS  Google Scholar 

  83. Zhang Q, Zhang Y, Zhao Y, Yang B, Fu C, Wei Y, Tao L. Multicomponentpolymerization system combining Hantzsch reaction andreversible addition-fragmentation chain transfer to efficiently synthesizewell-defined poly(1,4-dihydropyridine)s. ACS Macro Lett, 2015,4: 128–132

    Article  CAS  Google Scholar 

  84. Kakuchi P. Multicomponent reactions in polymer synthesis. AngewChem Int Ed, 2014, 53: 46–48

    Article  CAS  Google Scholar 

  85. Passerini M. Isonitriles. II. Compounds with aldehydes or with ketonesand monobasic organic acids. Gazz Chem Ital, 1921, 51: 181–189

    CAS  Google Scholar 

  86. Kreye O, Tóth T, Meier MAR. Introducing multicomponent reactionsto polymer science: Passerini reactions of renewable monomers. J AmChem Soc, 2011, 133: 1790–1792

    Article  CAS  Google Scholar 

  87. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. Sequence regulatedpoly(ester-amide)s based on Passerini reaction. ACS Macro Lett, 2012, 1: 1300–1303

    Article  CAS  Google Scholar 

  88. Wang YZ, Deng XX, Li L, Li ZL, Du FS, Li ZC. One-pot synthesisof polyamides with various functional side groups via Passerini reaction. Polym Chem, 2013, 4: 444–448

    Article  CAS  Google Scholar 

  89. Li L, Deng XX, Li ZL, Du FS, Li ZC. Multifunctional photodegradablepolymers for reactive micropatterns. Macromolecules, 2014, 47: 4660–4667

    Article  CAS  Google Scholar 

  90. Zhang LJ, Deng XX, F Du FS, Li ZC. Chemical synthesis of functionalpoly(4-hydroxybutyrate) with controlled degradation via intramolecularcyclization. Macromolecules, 2013, 46: 9554–9562

    Article  CAS  Google Scholar 

  91. Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR. Structurallydiverse polyamides obtained from monomers derived via the Ugimulticomponent reaction. Chem Eur J, 2012, 18: 5767–5776

    Article  CAS  Google Scholar 

  92. Sehlinger A, Dannecker PK, Kreye O, and Meier MAR. Diverselysubstituted polyamides: macromolecular design using the Ugifour-component reaction. Macromolecules, 2014, 47: 2774–2783

    Article  CAS  Google Scholar 

  93. Sehlinger A, Schneider R, Meier MAR. Ugi reactions with CO2: accessto functionalized polyurethanes, polycarbonates, polyamides,and polyhydantoins. Macromol Rapid Commun, 2014, 35: 1866–1871

    CAS  Google Scholar 

  94. Hulme C, Ma L, Romano JJ, Morton G, Tang SY, Cherrier MP, Choi S, Salvino J, Labaudiniere R. Novel application of carbon dioxide/MeOH for synthesis of hydantoins and cyclic ureas via the Ugi reaction. Tetrahedron Lett, 2000, 41: 1889–1893

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Feng or Xiaoyu Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Feng, C., Lu, G. et al. Application of named reactions in polymer synthesis. Sci. China Chem. 58, 1695–1709 (2015). https://doi.org/10.1007/s11426-015-5447-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5447-1

Keywords

Navigation