Skip to main content
Log in

Thermal-reductive transformations of carbon dioxide catalyzed by small molecules using earth-abundant elements

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In the present review, we summarize the progress for thermal reductive transformations of CO2 catalyzed by small homogeneous catalysts using earth-abundant elements. Three main types of transformations categorized by the use of different reductants (hydrogen, hydrosilanes, and boranes), in which no C–C bond formation is involved, are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jolla L. CO2 concentration at Mauna Loa observatory. http://scrippsco2. ucsd.edu/, 2014-11-15

    Google Scholar 

  2. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev, 2014, 114: 1709–1742

    Article  CAS  Google Scholar 

  3. Suib SL. New and Future Developments in Catalysis. Vol. 4. Oxford: Elsevier, 2013. 81–147

    Google Scholar 

  4. Tanaka R, Yamashita M, Chung LW, Morokuma K, Nozaki K. Mechanistic studies on the reversible hydrogenation of carbon dioxide catalyzed by an Ir-PNP complex. Organometallics, 2011, 30: 6742–6750

    Article  CAS  Google Scholar 

  5. Sanderson RT. Polar Covalence. New York: Academic Press, 1983

    Google Scholar 

  6. Sanderson RT. Chemical Bonds and Bond Energy. New York, London: Academic Press, 1971

    Google Scholar 

  7. Inoue Y, Izumida H, Sadaki Y, Hashimoto H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild condition. Chem Lett, 1976: 863–864

    Google Scholar 

  8. Federsel C, Boddien A, Jackstell R, Jennerjahn R, Dyson PJ, Scopelliti R, Laurenczy G, Beller M. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew Chem Int Ed, 2010, 49: 9777–9780

    Article  CAS  Google Scholar 

  9. Ziebart C, Federsel C, Anbarasan P, Jackstell R, Baumann W, Spannenberg A, Beller M. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J Am Chem Soc, 2012, 134: 20701–20704

    Article  CAS  Google Scholar 

  10. Drake JL, Manna CM, Byers JA. Enhanced carbon dioxide hydrogenation facilitated by catalytic quantities of bicarbonate and other inorganic salts. Organometallics, 2013, 32: 6891–6894

    Article  CAS  Google Scholar 

  11. Yang XZ. Hydrogenation of carbon dioxide catalyzed by PNP pincer iridium, iron, and cobalt complexes: a computational design of base metal catalysts. ACS Catal, 2011, 1: 849–854

    Article  CAS  Google Scholar 

  12. Langer R, Diskin-Posner Y, Leitus G, Shimon LJW, Ben-David Y, Milstein D. Low-pressure hydrogenation of carbon dioxide catalyzed by an iron pincer complex exhibiting noble metal activity. Angew Chem Int Ed, 2011, 50: 9948–9952

    Article  CAS  Google Scholar 

  13. Federsel C, Ziebart C, Jackstell R, Baumann W, Beller M. Catalytic hydrogenation of carbon dioxide and bicarbonates with a well defined cobalt dihydrogen complex. Chem Eur J, 2012, 18: 72–75

    Article  CAS  Google Scholar 

  14. Matthew SJ, Michael TM, Appel AM, Linehan JC. A cobalt-based catalyst for the hydrogenation of CO2 under ambient conditions. J Am Chem Soc, 2013, 135: 11533–11536

    Article  Google Scholar 

  15. Kumar N, Camaioni DM, Dupuis M, Raugei S, Appel AM. Mechanistic insights into hydride transfer for catalytic hydrogenation of CO2 with cobalt complexes. Dalton Trans, 2014, 43: 11803–11806

    Article  CAS  Google Scholar 

  16. Badiet YM, Wang WH, Hull JF, Szalda DJ, Himeda Y, Fujita E. Muckerman JT, Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media. Inorg Chem, 2013, 52: 12576–12586

    Article  Google Scholar 

  17. Hou C, Jiang JX, Zhang SD, Wang G, Zhang ZH, Ke ZF, Zhao CY Hydrogenation of carbon dioxide using half-sandwich cobalt, rhodium, and iridium complexes: DFT study on the mechanism and metal effect. ACS Catal, 2014, 4: 2990–2997

    Article  CAS  Google Scholar 

  18. Inoue Y, Izumid H, Sasaki Y, Hashimoto H. Catalystic fixation of carbon dioxide to acid by transition-metal complexes under mild conditons. Chem Lett, 1976: 863–864

    Google Scholar 

  19. Tai CC, Chang T, Roller B, Jessop PG. High-pressure combinatorial screening of homogeneous catalysts: hydrogenation of carbon dioxide. Inorg Chem, 2003, 42: 7340–7341

    Article  CAS  Google Scholar 

  20. Motokura K, Kashiwame D, Miyaji A, Baba T. Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O. Org Lett, 2012, 14: 2642–2645

    Article  CAS  Google Scholar 

  21. Motokura K, Takahashi N, Kashiwame D, Yamaguchi S, Miyaji A, Baba T. Copper-diphosphine complex catalysts for N-formylation of amines under 1 atm of carbon dioxide with polymethylhydrosiloxane. Catal Sci Technol, 2013, 3: 2392–2396

    Article  CAS  Google Scholar 

  22. Zhang L, Cheng J, Hou Z. Highly efficient catalytic hydrosilylation of carbon dioxide by an N-heterocyclic carbene copper catalyst. Chem Commun, 2013, 49: 4782–4784

    Article  CAS  Google Scholar 

  23. Frogneux X, Jacquet O, Cantat T. Iron-catalyzed hydrosilylation of CO2: CO2 conversion to formamides and methylamines. Catal Sci Technol, 2014, 4: 1529–1533

    Article  CAS  Google Scholar 

  24. Jacquet O, Frogneux X, Gomes CDN, Cantat T. CO2 as a C1-building block for the catalytic methylation of amines. Chem Sci, 2013, 4: 2127–2131

    Article  CAS  Google Scholar 

  25. Sattler W, Parkin G. Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization. J Am Chem Soc, 2012, 134: 17462–17465

    Article  CAS  Google Scholar 

  26. González-Sebastián L, Flores-Alamo M, García JJ. Nickel-catalyzed hydrosilylation of CO2 in the presence of Et3B for the synthesis of formic acid and related formates. Organometallics, 2013, 32: 7186–7194

    Article  Google Scholar 

  27. Scheuermann ML, Semproni Scott P, Chirik PJ. Carbon dioxide hydrosilylation romoted by cobalt pincer complexes. Inorg Chem, 2014, 53: 9463–9465

    Article  CAS  Google Scholar 

  28. Khandelwal M, Wehmschulte RJ. Deoxygenative reduction of carbon dioxide to methane, toluene, and diphenylmethane with [Et2Al]+ as catalyst. Angew Chem Int Ed, 2012, 51: 7323–7326

    Article  CAS  Google Scholar 

  29. Wehmschulte RJ, Saleh M, Powell DR. CO2 activation with bulky neutral and cationic phenoxyalanes. Organometallic, 2013, 32: 6812–6819

    Article  CAS  Google Scholar 

  30. Riduan SN, Zhang Y, Ying JY. Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed, 2009, 48: 3322–3325

    Article  CAS  Google Scholar 

  31. Huang F, Lu G, Zhao L, Li H, Wang ZX. The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. J Am Chem Soc, 2010, 132: 12388–12396

    Article  CAS  Google Scholar 

  32. Das Neves Gomes C, Jacquet O, Villiers C, Thuery P, Ephritikhine M, Cantat T. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew Chem Int Ed, 2012, 51: 187–190

    Article  CAS  Google Scholar 

  33. Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T. Recycling of carbon and silicon wastes: room temperature formylation of N–H bonds using carbon dioxide and polymethylhydrosiloxane. J Am Chem Soc, 2012, 134: 2934–2937

    Article  CAS  Google Scholar 

  34. Berkefeld A, Piers WE, Parvez M. Tandem frustrated lewis pair/ tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc, 2010, 132: 10660–10661

    Article  CAS  Google Scholar 

  35. Chakraborty S, Zhang J, Krause JA, Guan H. An efficient nickel catalyst for the reduction of carbon dioxide with a borane. J Am Chem Soc, 2010, 132: 8872–8873

    Article  CAS  Google Scholar 

  36. Chakraborty S, Zhang J, Patel YJ, Krause JA, Guan H. Pincer-ligated nickel hydridoborate complexes: the dormant species in catalytic reduction of carbon dioxide with boranes. Inorg Chem, 2012, 52: 37–47

    Article  Google Scholar 

  37. Laitar DS, Müller P, Sadighi JP. Efficient homogeneous catalysis in the reduction of CO2 to CO. J Am Chem Soc, 2005, 127: 17196–17197

    Article  CAS  Google Scholar 

  38. Zhao H, Lin Z, Marder TB. Density functional theory studies on the mechanism of the reduction of CO2 to CO catalyzed by copper(I) boryl complexes. J Am Chem Soc, 2006, 128: 15637–15643

    Article  CAS  Google Scholar 

  39. Shintani R, Nozaki K. Copper-catalyzed hydroboration of carbon dioxide. Organometallics, 2013, 32: 2459–2462

    Article  CAS  Google Scholar 

  40. Courtemanche MA, Légaré MA, Maron L, Fontaine FG. A highly active hosphine-borane organocatalyst for the reduction of CO2 to methanol using hydroboranes. J Am Chem Soc, 2013, 135: 9326–9329

    Article  CAS  Google Scholar 

  41. Courtemanche MA, Légaré MA, Maron L, Fontaine FG. Reducing CO2 to methanol using frustrated Lewis Pairs: on the mechanism of hosphine-borane mediated hydroboration of CO2. J Am Chem Soc, 2014, 136: 10708–10717

    Article  CAS  Google Scholar 

  42. Courtemanche MA, Larouche J, Légaré MA, Fontaine FG. A tris(triphenylphosphine) aluminum ambiphilic precatalyst for the reduction of carbon dioxide with catecholborane. Organometallics, 2013, 32: 6804–6811

    Article  CAS  Google Scholar 

  43. Wang T, Stephan DW. Carbene-9-BBN ring expansions as a route to intramolecular frustrated Lewis Pairs for CO2 reduction. Chem Eur J, 2014, 20: 3036–3039

    Article  CAS  Google Scholar 

  44. Wang T, Stephan DW. Phosphine catalyzed reduction of CO2 with boranes. Chem Commun, 2014, 50: 7007–7010

    Article  CAS  Google Scholar 

  45. Das Neves Gomes C, Blondiaux E, Thuery P, Cantat T. Metal-free reduction of CO2 with hydroboranes: two efficient pathways at play for the reduction of CO2 to methanol. Chem Eur J, 2014, 20: 7098–7106

    Article  CAS  Google Scholar 

  46. Enguerrand B, Jacky P, Thibault C. Carbon dioxide reduction to methylamines under metal-free conditions Angew Chem Int Ed, 2014, 53: 12186–12190

    Article  Google Scholar 

  47. Shang R, Liu L. Transition metal-catalyzed decarboxylative crosscoupling reactions. Sci China Chem, 2011, 54: 1670–1687

    Article  CAS  Google Scholar 

  48. Zhang SL, Fu Y, Shang R. Theoretical analysis of factors controlling Pd-catalyzed decarboxylative coupling of carboxylic acids with olefins. J Am Chem Soc, 2010, 132: 638–646

    Article  CAS  Google Scholar 

  49. Wang S, Huang H, Kahnt J, Mueller AP, Köpke M, Thauer RK. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol, 2013, 195: 4373–4386

    Article  CAS  Google Scholar 

  50. Schuchmann K, Müller V. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science, 2013, 342: 1382–1385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Lin Lin.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Qin, T., Zhang, Q. et al. Thermal-reductive transformations of carbon dioxide catalyzed by small molecules using earth-abundant elements. Sci. China Chem. 58, 1524–1531 (2015). https://doi.org/10.1007/s11426-015-5405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5405-y

Keywords

Navigation