Skip to main content
Log in

Palladium-catalyzed intermolecular C-H amidation of indoles with sulfonyl azides

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new kind of intermolecular indole C-H amidation reaction catalyzed by the most frequently used palladium catalyst has been developed. Sulfonyl azide was employed as an innovative nitrogen source and environmentally benign nitrogen was produced as the only byproduct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hili R, Yudin AK. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat Chem Biol, 2006, 2: 284–287

    Article  CAS  Google Scholar 

  2. Ricci A. Amino Group Chemistry. Weinheim: Wiley-VCH, 2008

    Google Scholar 

  3. Evano G, Blanchard N, Toumi M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem Rev, 2008, 108: 3054–3131

    Article  CAS  Google Scholar 

  4. Rao H, Fu H. Copper-catalyzed coupling reactions. Synlett, 2011, 6: 745–769

    Google Scholar 

  5. Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides. J Am Chem Soc, 2008, 130: 9971–9983

    Article  CAS  Google Scholar 

  6. Hartwig JF. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc Chem Res, 2008, 41: 1534–1544

    Article  CAS  Google Scholar 

  7. Wolfe JP, Wagam S, Marcoux JF, Buchwald SL. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Acc Chem Res, 1998, 31: 805–818

    Article  CAS  Google Scholar 

  8. Paul F, Patt J, Hartwig JF. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J Am Chem Soc, 1994, 116: 5969–5970

    Article  CAS  Google Scholar 

  9. Guram AS, Buchwald SL. Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J Am Chem Soc, 1994, 116: 7901–7902

    Article  CAS  Google Scholar 

  10. For recent reviews on direct C-H amination: a) Wencel-Delord J, Droge T, Liu F, Glorius F. Towards mild metal-catalyzed C-H bond activation. Chem Soc Rev, 2011, 40: 4740–4761

    Article  CAS  Google Scholar 

  11. Cho SH, Kim JY, Kwak J, Chang S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem Soc Rev, 2011, 40: 5068–5083

    Article  CAS  Google Scholar 

  12. Song G, Wang F, Li X. C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. Chem Soc Rev, 2012, 41: 3651–3678

    Article  CAS  Google Scholar 

  13. Stokes BJ, Driver TG. Transition metal-catalyzed formation of N-heterocycles via aryl- or vinyl-C-H bond amination. Eur J Org Chem, 2011: 4071–4088

    Google Scholar 

  14. Lu H, Zhang XP. Catalytic C-H functionalization by metalloporphyrins: recent developments and future directions. Chem Soc Rev, 2011, 40: 1899–1909

    Article  CAS  Google Scholar 

  15. Collet F, Lescot C, Dauban P. Catalytic C-H amination: the stereoselectivity issue. Chem Soc Rev, 2011, 40: 1926–1936

    Article  CAS  Google Scholar 

  16. Roizen JL, Harvey ME, Du Bios J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C-H bonds. Acc Chem Res, 2012, 45: 911–922

    Article  CAS  Google Scholar 

  17. For recent reviews on C-H activation, see: a) Rouquet G, Chatani N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew Chem Int Ed, 2013, 52: 11726–11743

    Article  CAS  Google Scholar 

  18. Li BJ, Shi ZJ. From C(sp2)-H to C(sp3)-H: systematic studies on transition metal-catalyzed oxidative C-C formation. Chem Soc Rev, 2012, 41: 5588–5598

    Article  CAS  Google Scholar 

  19. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  20. Ackermann L, Kapdi AR, Potukuchi HK, Kozhushkov SI. Synthesis via C-H bond functionalizations. In: Li CJ, Ed. Handbook of Green Chemistry. Weinheim: Wiley-VCH, 2012. 259

    Google Scholar 

  21. Neufeldt SR, Sanford MS. Controlling site selectivity in palladium-catalyzed C-H bond functionalization. Acc Chem Res, 2012, 45: 936–946

    Article  CAS  Google Scholar 

  22. Colby DA, Tsai AS, Bergman RG, Ellman JA. Rhodium catalyzed chelation-assisted C-H bond functionalization reaction. Acc Chem Res, 2012, 45: 814–825

    Article  CAS  Google Scholar 

  23. Engle KM, Mei TS, Wasa M, Yu JQ. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  Google Scholar 

  24. Arockiam PB, Bruneau C, Dixueuf PH. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem Rev, 2012, 112: 5879–5918

    Article  CAS  Google Scholar 

  25. Ackermann L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev, 2011, 111: 1315–1345

    Article  CAS  Google Scholar 

  26. Xu LM, Li BJ, Yang Z, Shi ZJ. Organopalladium(IV) chemistry. Chem Soc Rev, 2010, 39: 712–733

    Article  CAS  Google Scholar 

  27. For examples of oxidative amination of activated arenes: a) Wang Q, Schreiber SL. Copper-mediated amidation of heterocyclic and aromatic C-H bonds. Org Lett, 2009, 11: 5178–5180

    Article  CAS  Google Scholar 

  28. Monguchi D, Fujiwara T, Furukawa H, Mori A. Direct amination of azoles via catalytic C-H, N-H coupling. Org Lett, 2009, 11: 1607–1610.

    Article  CAS  Google Scholar 

  29. For examples of oxidative direct amination of arenes bearing directing group: c) Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. Palladium-catalyzed intermolecular directed C-H amidation of aromatic ketones. J Am Chem Soc, 2011, 133: 1466–1474

    Article  CAS  Google Scholar 

  30. John A, Nicholas KM. Copper-catalyzed amidation of 2-phenylpyridine with oxygen as the terminal oxidant. J Org Chem, 2011, 76: 4158–4162

    Article  CAS  Google Scholar 

  31. Kawano T, Hirano K, Satoh T, Miura M. A new entry of amination reagents for heteroaromatic C-H bonds: copper-catalyzed direct amination of azoles with chloroamines at room temperature. J Am Chem Soc, 2010, 132: 6900–6901

    Article  CAS  Google Scholar 

  32. Sun K, Li Y, Xiong T, Zhang J, Zhang Q. Palladium-catalyzed C-H aminations of anilides with N-fluorobenzenesulfonimide. J Am Chem Soc, 2011, 133: 1694–1697

    Article  CAS  Google Scholar 

  33. Yoo EJ, Ma S, Mei TS, Chan KSL, Yu JQ. Pd-catalyzed intermolecular C-H amination with alkylamines. J Am Chem Soc, 2011, 133: 7652–7655

    Article  CAS  Google Scholar 

  34. Ng KH, Zhou Z, Yu WY. Rhodium(III)-catalyzed intermolecular direct amination of aromatic C-H bonds with N-chlo-roamines. Org Lett, 2012, 14: 272–275

    Article  CAS  Google Scholar 

  35. Grohmann C, Wang H, Glorius F. Rh[III]-catalyzed direct C-H amination using N-chloroamines at room temperature. Org Lett, 2012, 14: 656–659

    Article  CAS  Google Scholar 

  36. Kim JY, Park SH, Ryu J, Cho SH, Kim SH, Chang S. Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C-H bond activation. J Am Chem Soc, 2012, 134: 9110–9113

    Article  CAS  Google Scholar 

  37. For recent transition-metal catalyzed amidation reaction with sulfonyl azide as nitrogen source, see: a) Zheng QZ, Liang YF, Qin C, Jiao N. Ru(II)-catalyzed intermolecular C-H amidation of weakly coordinating ketones. Chem Commun, 2013, 49: 5654–5656

    Article  CAS  Google Scholar 

  38. Yu DG, Suri M, Glorius F. Rh(III)/Cu(II)-cocatalyzed synthesis of 1H-indazoles through C-H amidation and N-N bond formation. J Am Chem Soc, 2013, 135: 8802–8805

    Article  CAS  Google Scholar 

  39. Thirunavukkarasu VS, Raghuvanshi K, Ackermann L. Expedient C-H amidations of heteroaryl arenes catalyzed by versatile ruthenium(II) catalysts. Org Lett, 2013, 15: 3286–3289

    Article  CAS  Google Scholar 

  40. Kim J, Kim J, Chang S. Ruthenium-catalyzed direct C-H amidation of arenes including weakly coordinating aromatic ketones. Chem Eur J, 2013, 19: 7328–7333

    Article  CAS  Google Scholar 

  41. Bhanuchandra M, Yadav MR, Rit RK, Kuram MR, Sahoo AK. Ru(II)-catalyzed intermolecular ortho-C-H amidation of aromatic ketones with sulfonyl azides. Chem Commun, 2013, 49: 5225–5227

    Article  CAS  Google Scholar 

  42. Shi J, Zhou B, Yang Y, Li Y. Rhodium-catalyzed regioselective amidation of indoles with sulfonyl azides via C-H bond activation. Org Biomol Chem, 2012, 10: 8953–8955

    Article  CAS  Google Scholar 

  43. Yadav MR, Rit RJ, Sahoo AK. Sulfoximine directed intermolecular o-C-H amidation of arenes with sulfonyl azides. Org Lett, 2013, 15: 1638–1641

    Article  CAS  Google Scholar 

  44. Lee D, Kim Y, Chang S. Iridium-catalyzed direct arene C-H bond amidation with sulfonyl- and arylazides. J Org Chem, 2013, 78: 11102–11109

    Article  CAS  Google Scholar 

  45. For recent transition-metal catalyzed amination reaction with other types of azide as nitrogen source, see: a) Ryu J, Kwak J, Shin K, Lee D, Chang S. Ir(III)-catalyzed mild C-H amidation of arenes and alkenes: an efficient usage of acyl azides as the nitrogen source. J Am Chem Soc, 2013, 135: 12861–12868

    Article  CAS  Google Scholar 

  46. Lian Y, Hummel JR, Bergman RG, Ellman JA. Facile synthesis of unsymmetrical acridines and phenazines by a Rh(III)-catalyzed amination/cyclization/aromatization cascade. J Am Chem Soc, 2013, 135: 12548–12551

    Article  CAS  Google Scholar 

  47. Ryu J, Shin K, Park SH, Kim JY, Chang S. Rhodium-catalyzed direct C-H amination of benzamides with aryl azides: a synthetic route to diarylamines. Angew Chem Int Ed, 2012, 51: 9904–9908

    Article  CAS  Google Scholar 

  48. Shin K, Baek Y, Chang S. Direct C-H amination of arenes with alkyl azides under rhodium catalysis. Angew Chem Int Ed, 2013, 52: 8031–8036

    Article  CAS  Google Scholar 

  49. Tang C, Yuan Y, Cui Y, Jiao N. Rh-catalyzed diarylamine synthesis by intermolecular C-H amination of heteroarylarenes. Eur J Org Chem, 2013, 2013: 7480–7483

    Article  CAS  Google Scholar 

  50. Sundberg RJ. Indoles. San Diego: Academic Press, 1996

    Google Scholar 

  51. Katrizky AR, Ress CW. Comprehensive Heterocyclic Chemistry. 2nd Ed. Pergamon, 1996. 119

    Google Scholar 

  52. For some recent reviews: see a) Humphrey GR, Kuethe JT. Practical methodologies for the synthesis of indoles. Chem Rev, 2006, 106: 2875–2911

    Article  CAS  Google Scholar 

  53. Vicente R. Recent advances in indole syntheses: new routes for a classic target. Org Biomol Chem, 2011, 9: 6469–6480

    Article  CAS  Google Scholar 

  54. Cacchi S, Fabrizi G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev, 2011, 111: 215–283

    Article  Google Scholar 

  55. Oda Y, Matsuyama N, Hirano K, Satoh T, Miura M. Dehydrogenative synthesis of C3-azolylindoles via copper-promoted annulative direct coupling of o-alkynylanilines. Synthesis, 2012: 1515–1520

    Google Scholar 

  56. Peng J, Zhao J, Hu Z, Liang D, Huang J, Zhu Q. Palladium-catalyzed C(sp2)-H cyanation using tertiary amine derived isocyanide as a cyano source. Org Lett, 2012, 14: 4966–4969

    Article  CAS  Google Scholar 

  57. Peng J, Liu L, Hu Z, Huang J, Zhu Q. Direct carboxamidation of indoles by palladium-catalyzed C-H activation and isocyanide insertion. Chem Commun, 2012, 48: 3772–3774

    Article  CAS  Google Scholar 

  58. Bahadur GA, Bailey AS, Scott PW, Vandrevala MH. The reactions of four derivatives of pyrrolo[1,2-a]indole with arene-sulphonyl azides. J Chem Soc, Perkin Trans 1, 1980: 2870–2877

    Google Scholar 

  59. Harmon RE, Wellman G, Gupta SK. Reaction of arylsulfonyl azides with N-methylindole. J Org Chem, 1973, 38: 11–16. Two reports involving the reaction of indole with sulfonyl azides to give 3-amidated indole have been published. However, there are several pivotal differences between our procedure and the published reports: i) Palladium catalyst and PPh3 are prerequisite for our procedure; however, catalyst was not nessesary in the published reports; ii) N-H free indoles were suitable substrates for our procedure; but only N-H alkyl substituted indoles were applied in the published reports; iii) C3-position amidated indoles generated directly in our procedure; yet C3-position amidated indoles generated through indole C2 amidation followed by C2 C3 transformation in flash column chromatography in Ref. i) Palladium catalyst and PPh3 are prerequisite for our procedure; however, catalyst was not nessesary in the published reports; ii) N-H free indoles were suitable substrates for our procedure; but only N-H alkyl substituted indoles were applied in the published reports; iii) C3-position amidated indoles generated directly in our procedure; yet C3-position amidated indoles generated through indole C2 amidation followed by C2 C3 transformation in flash column chromatography in Ref. [14b]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Luo or Qiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Luo, S. & Zhu, Q. Palladium-catalyzed intermolecular C-H amidation of indoles with sulfonyl azides. Sci. China Chem. 58, 1349–1353 (2015). https://doi.org/10.1007/s11426-015-5369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5369-y

Keywords

Navigation