Skip to main content
Log in

Vertically ordered silica mesochannels as preconcentration materials for the electrochemical detection of methylene blue

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Silica mesochannels (SMCs) vertically and regularly oriented to the surface of indium tin oxide (ITO) electrodes were prepared and utilized for preconcentration and detection of methylene blue (MB) in aqueous solution. The positively charged MB can be adsorbed to the SMCs by following the pseudo-first-order kinetic model. The negative value of ΔG=−34.73 kJ/mol derived from the Langmuir adsorption isotherm indicated the thermodynamic feasibility of the adsorption and the spontaneous nature of the process. Moreover, the adsorbed MB can undergo an electrochemical reaction on the ITO electrode at a suitable potential and the resulting electrical current can be utilized to quantify the MB in aqueous solution. A good analytical performance for MB with a linear range from 10 nmol/L to 1.0 μmol/L and a detection limit at the nmol/L level was obtained. We believe that such a platform consisting of SMCs perpendicularly tethered to the underlying electrode surface simultaneously allows enrichment and electrochemical detection and can be extended for the detection of various charged dyes, as well as many other charged species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheng J, Xie Y, Zhou Y. Adsorption of methylene blue from aqueous solution on pyrophyllite. Appl Clay Sci, 2009, 46: 422–424

    Article  CAS  Google Scholar 

  2. Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol, 2001, 77: 247–255

    Article  CAS  Google Scholar 

  3. Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol, 2006, 97: 1061–1085

    Article  CAS  Google Scholar 

  4. Pinheiro HM, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm, 2004, 61: 121–139

    Article  CAS  Google Scholar 

  5. Riu J, Schönsee I, Barceló D, Ràfols C. Determination of sulphonated azo dyes in water and wastewater. TrAC, Trends Anal Chem, 1997, 16: 405–419

    Article  CAS  Google Scholar 

  6. Walker GM, Weatherley LR. Adsorption of dyes from aqueous solution: the effect of adsorbent pore size distribution and dye aggregation. Chem Eng J, 2001, 83: 201–206

    Article  CAS  Google Scholar 

  7. Geçgel Ü, Özcan G, Gürpınar GÇ. Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum). J Chem, 2012, 2013: 1–9

    Article  Google Scholar 

  8. Ho KY, McKay G, Yeung KL. Selective adsorbents from ordered mesoporous silica. Langmuir, 2003, 19: 3019–3024

    Article  CAS  Google Scholar 

  9. Zubieta C, Sierra MB, Morini MA, Schulz PC, Albertengo L, Rodriguez MS. The adsorption of dyes used in the textile industry on mesoporous materials. Colloid Polym Sci, 2008, 286: 377–384

    Article  CAS  Google Scholar 

  10. Cestari AR, Vieira EFS, Vieira GS, da Costa LP, Tavares AMG, Loh W, Airoldi C. The removal of reactive dyes from aqueous solutions using chemically modified mesoporous silica in the presence of anionic surfactant. The temperature dependence and a thermodynamic multivariate analysis. J Hazard Mater, 2009, 161: 307–316

    CAS  Google Scholar 

  11. Anbia M, Salehi S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigm, 2012, 94: 1–9

    Article  CAS  Google Scholar 

  12. Chen Z, Zhou L, Zhang F, Yu C, Wei Z. Multicarboxylic hyperbranched polyglycerol modified SBA-15 for the adsorption of cationic dyes and copper ions from aqueous media. Appl Surf Sci, 2012, 258: 5291–5298

    Article  CAS  Google Scholar 

  13. Wang C, Tao S, Meng C. Facile fabrication of magnetic mesoporous silica via multifunctional surfactant self-assembly and oxidation. J Mater Chem, 2012, 22: 7179–7186

    Article  CAS  Google Scholar 

  14. Qu Q, Gu Z. Facile synthesis of hierarchical MCM-41 spheres with an ultrahigh surface area and their application for removal of methylene blue from aqueous solutions. Anal Methods, 2014, 6: 1397–1403

    Article  CAS  Google Scholar 

  15. Rehman F, Volpe PLO, Airoldi C. Free amino and imino-bridged centres attached to organic chains bonded to structurally ordered silica for dye removal from aqueous solution. J Environ Manage, 2014, 133: 135–143

    Article  CAS  Google Scholar 

  16. Wang H-N, Liu F-H, Wang X-L, Shao K-Z, Su Z-M. Three neutral metal-organic frameworks with micro- and meso-pores for adsorption and separation of dyes. J Mater Chem A, 2013, 1: 13060–13063

    Article  CAS  Google Scholar 

  17. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces, 2013, 5: 8796–8804

    Article  CAS  Google Scholar 

  18. Zhang B, Liu B, Liao J, Chen G, Tang D. Novel electrochemical immunoassay for quantitative monitoring of biotoxin using target-responsive cargo release from mesoporous silica nanocontainers. Anal Chem, 2013, 85: 9245–9252

    Article  CAS  Google Scholar 

  19. Lin C, Wu Y, Luo F, Chen D, Chen X. A label-free electrochemical DNA sensor using methylene blue as redox indicator based on an exonuclease III-aided target recycling strategy. Biosens Bioelectron, 2014, 59: 365–369

    Article  CAS  Google Scholar 

  20. Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B, 2012, 90: 197–203

    Article  CAS  Google Scholar 

  21. Özer A, Dursun G. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. J Hazard Mater, 2007, 146: 262–269

    Article  Google Scholar 

  22. Feng M, You W, Wu Z, Chen Q, Zhan H. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Appl Mater Interfaces, 2013, 5: 12654–12662

    Article  CAS  Google Scholar 

  23. Gillman PK. Methylene blue implicated in potentially fatal serotonin toxicity. Anaesthesia, 2006, 61: 1013–1014

    Article  CAS  Google Scholar 

  24. Ramsay RR, Dunford C, Gillman PK. Methylene blue and serotonin toxicity: inhibition of monoamine oxidase A (MAO A) confirms a theoretical prediction. Br J Pharmacol, 2007, 152: 946–951

    Article  CAS  Google Scholar 

  25. Borwitzky H, Haefeli WE, Burhenne J. Analysis of methylene blue in human urine by capillary electrophoresis. J Chromatogr B, 2005, 826: 244–251

    Article  CAS  Google Scholar 

  26. Tang D, Santschi PH. Sensitive determination of dissolved sulfide in estuarine water by solid-phase extraction and high-performance liquid chromatography of methylene blue. J Chromatogr A, 2000, 883: 305–309

    Article  CAS  Google Scholar 

  27. Kim S-J, Ha D-J, Koo T-S. Simultaneous quantification of methylene blue and its major metabolite, azure B, in plasma by LC-MS/MS and its application for a pharmacokinetic study. Biomed Chromatogr, 2014, 28: 518–524

    Article  CAS  Google Scholar 

  28. Bélaz-David N, Decosterd LA, Appenzeller M, Ruetsch YA, Chioléro R, Buclin T, Biollaz J. Spectrophotometric determination of methylene blue in biological fluids after ion-pair extraction and evidence of its adsorption on plastic polymers. Eur J Pharm Sci, 1997, 5: 335–345

    Article  Google Scholar 

  29. Wang S, Lv S, Guo Z, Jiang F. Solid-phase microextraction of methylene blue using carboxy graphene-modified steel wires, and its detection by electrochemiluminescence. Microchim Acta, 2014, 181: 427–433

    Article  CAS  Google Scholar 

  30. Meynen V, Cool P, Vansant EF. Verified syntheses of mesoporous materials. Microporous Mesoporous Mat, 2009, 125: 170–223

    Article  CAS  Google Scholar 

  31. Moscofian ASO, Pires CTGVMT, Vieira AP, Airoldi C. Removal of reactive dyes using organofunctionalized mesoporous silicas. J Porous Mater, 2013, 20: 1179–1188

    Article  CAS  Google Scholar 

  32. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev, 1997, 97: 2373–2420

    Article  CAS  Google Scholar 

  33. Zhao XS, Lu GQ, Hu X. Characterization of the structural and surface properties of chemically modified MCM-41 material. Microporous Mesoporous Mat, 2000, 41: 37–47

    Article  CAS  Google Scholar 

  34. Huo Q, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater, 1996, 8: 1147–1160

    Article  CAS  Google Scholar 

  35. Guillemin Y, Etienne M, Aubert E, Walcarius A. Electrogeneration of highly methylated mesoporous silica thin films with vertically-aligned mesochannels and electrochemical monitoring of mass transport issues. J Mater Chem, 2010, 20: 6799–6807

    Article  CAS  Google Scholar 

  36. Teng Z, Zheng G, Dou Y, Li W, Mou C-Y, Zhang X, Asiri AM, Zhao D. Highly ordered mesoporous silica films with perpendicular mesochannels by a simple Stöber-solution growth approach. Angew Chem Int Ed, 2012, 51: 2173–2177

    Article  CAS  Google Scholar 

  37. Jiang X, Bastakoti BP, Weng W, Higuchi T, Oveisi H, Suzuki N, Chen W-J, Huang Y-T, Yamauchi Y. Preparation of ordered mesoporous alumina-doped titania films with high thermal stability and their application to high-speed passive-matrix electrochromic displays. Chem Eur J, 2013, 19: 10958–10964

    Article  CAS  Google Scholar 

  38. Wu KCW, Jiang X, Yamauchi Y. New trend on mesoporous films: precise controls of one-dimensional (1D) mesochannels toward innovative applications. J Mater Chem, 2011, 21: 8934–8939

    Article  CAS  Google Scholar 

  39. Walcarius A, Sibottier E, Etienne M, Ghanbaja J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat Mater, 2007, 6: 602–608

    Article  CAS  Google Scholar 

  40. Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A. Molecular transport into mesostructured silica thin films: electrochemical monitoring and comparison between P6m, P63/mmc, and Pm3n structures. Chem Mater, 2007, 19: 844–856

    Article  CAS  Google Scholar 

  41. Lagergren S. About the theory of so-called adsorption of soluble substances. Kungl Svenska Vetenskapsakad Handl, 1898, 24: 1–39

    Google Scholar 

  42. Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc, 1916, 38: 2221–2295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ding, L. & Su, B. Vertically ordered silica mesochannels as preconcentration materials for the electrochemical detection of methylene blue. Sci. China Chem. 58, 1593–1599 (2015). https://doi.org/10.1007/s11426-015-5365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5365-2

Keywords

Navigation