Skip to main content
Log in

Electrochemical synthesis of sulfur-doped graphene sheets for highly efficient oxygen reduction

  • Articles
  • Special Topic Chemistry from Chinese Female Chemists
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Sulfur (S)-doped graphene sheets were prepared by a facile electrochemical method, which effectively combined exfoliation of graphite and in situ S doping of graphene together. The metal-free S-doped graphene sheets exhibit high electrocatalytic activity, long-term stability, and excellent tolerance to cross-over effects of methanol in alkaline media for the oxygen reduction reaction (ORR), indicating that these S-doped graphene sheets possess great potential for a substitute for Pt-based catalysts in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gong KP, Du F, Xia ZH, Durstock M, Dai LM. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009, 323: 760–764

    Article  CAS  Google Scholar 

  2. Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414: 345–352

    Article  CAS  Google Scholar 

  3. Xiong W, Du F, Liu Y, Perez A, Supp M, Ramakrishnan TS, Dai LM, Jiang L. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J Am Chem Soc, 2010, 132: 15839–15841

    Article  CAS  Google Scholar 

  4. Snyder J, Fujita T, Chen MW, Erlebacher J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater, 2010, 9: 904–907

    Article  CAS  Google Scholar 

  5. Lim B, Jiang MJ, Camargo, PHC, Cho, EC, Tao J, Lu XM, Zhu YM, Xia YN. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302–1305

    Article  CAS  Google Scholar 

  6. Chen ZW, Waje M, Li WZ, Yan YS. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed, 2007, 46: 4060–4063

    Article  CAS  Google Scholar 

  7. Yu XW, Ye SY. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC—Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources, 2007, 172: 145–154

    Article  CAS  Google Scholar 

  8. Shao Y, Liu J, Wang Y, Lin Y. Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem, 2009, 19: 46–59

    Article  CAS  Google Scholar 

  9. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev, 2004, 104: 4245–4269

    Article  CAS  Google Scholar 

  10. Geim, AK, Novoselov KS. The rise of graphene. Nat Mater, 2007, 6: 183–191

    Article  CAS  Google Scholar 

  11. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  Google Scholar 

  12. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A. Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed, 2009, 48: 7752–7777

    Article  CAS  Google Scholar 

  13. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett, 2008, 8: 3137–3140

    Article  CAS  Google Scholar 

  14. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, 2: 463–470

    Article  CAS  Google Scholar 

  15. Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater, 2010, 20: 2893–2902

    Article  CAS  Google Scholar 

  16. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. graphene-based ultracapacitors. Nano Lett, 2008, 8: 3498–3502

    Article  CAS  Google Scholar 

  17. Lee JK, Smith KB, Hayner CM, Kung HH. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Comm, 2010, 46: 2025–2027

    Article  CAS  Google Scholar 

  18. Liu ZW, Peng F, Wang HJ, Yu H, Zheng WX, Yang J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew Chem Int Ed, 2011, 50: 3257–3261

    Article  Google Scholar 

  19. Liu RL, Wu DQ, Feng XL, Mullen K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed, 2010, 49: 2565–2569

    Article  CAS  Google Scholar 

  20. Yang L, Jiang SJ, Zhao Y, Zhu L, Chen S, Wang XZ, Wu Q, Ma J, Ma YW, Hu Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem Int Ed, 2011, 50: 7132–7135

    Article  CAS  Google Scholar 

  21. Liu HT, Liu YQ, Zhu DB. Chemical doping of graphene. J Mater Chem, 2011, 21: 3335–3345

    Article  CAS  Google Scholar 

  22. Qu L, Liu Y, Baek JB, Dai L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4: 1321–1326

    Article  CAS  Google Scholar 

  23. Sheng ZH, Gao HL, Bao WJ, Wang FB, Xia XH. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J Mater Chem, 2012, 22: 390–395

    Article  CAS  Google Scholar 

  24. Yao Z, Nie HG, Yang Z, Zhou XM, Liu Z, Huang SM. Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chem Commun, 2012, 48: 1027–1029

    Article  CAS  Google Scholar 

  25. Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen XA, Huang S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano, 2012, 6: 205–211

    Article  CAS  Google Scholar 

  26. Poh HL, Simek P, Sofer Z, Pumera M. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. ACS Nano, 2013, 6: 5262–5272

    Article  Google Scholar 

  27. Yang SB, Zhi LJ, Tang K, Feng XL, Maier J, Mullen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater, 2012, 22: 3634–3640

    Article  CAS  Google Scholar 

  28. Wohlgemuth SA, Vilela F, Titirici MM, Antonietti M. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem, 2012, 14: 741–749

    Article  CAS  Google Scholar 

  29. Wohlgemuth SA, White RJ, Willinger MG, Titirici MM, Antonietti M. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction. Green Chem, 2012, 14: 1515–1523

    Article  CAS  Google Scholar 

  30. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK. Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006, 18: 187401–187404

    Article  Google Scholar 

  31. Besenhar JO, Fritz HP. Cathodic reduction of graphite in organic solutions of alkali and NR4 + salts. J Electroanal Chem, 1974, 53: 329–333

    Article  Google Scholar 

  32. Santhanam R, Noel M. Electrochemical intercalation of ionic species of tetrabutylammonium perchlorate on graphite electrodes. A potential dual-intercalation battery system. J Power Sources, 1995, 56: 101–105

    CAS  Google Scholar 

  33. Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3: 2367–2375

    Article  CAS  Google Scholar 

  34. Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc, 2009, 131: 4564–4565

    Article  CAS  Google Scholar 

  35. Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc, 2007, 129: 744–745

    Article  CAS  Google Scholar 

  36. Zhang LP, Xia ZH. Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C, 2011, 115: 11170–11176

    Article  CAS  Google Scholar 

  37. Glenis S, Nelson AJ, Labes MM. Sulfur doped graphite prepared via arc discharge of carbon rods in the presence of thiophenes. J Appl Phys, 1999, 86: 4464–4466

    Article  CAS  Google Scholar 

  38. Liang J, Jiao Y, Jaroniec M, Qiao SZ. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew Chem Int Ed, 2012, 51: 11496–11500

    Article  CAS  Google Scholar 

  39. Li Y, Zhao Y, Cheng HH, Hu Y, Shi GQ, Dai LM, Qu LT. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc, 2012, 134: 15–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louzhen Fan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ding, L. & Fan, L. Electrochemical synthesis of sulfur-doped graphene sheets for highly efficient oxygen reduction. Sci. China Chem. 58, 417–424 (2015). https://doi.org/10.1007/s11426-015-5319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5319-8

Keywords

Navigation