Skip to main content
Log in

Surface modification of natural cellulose substances: toward functional materials and applications

  • Feature Articles
  • Special Issue: Biophysical Chemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Combining various synthetic chemical processes and biological assemblies provides a promising strategy for the design and fabrication of functional materials with tailored structures and properties. The unique multilevel structures and morphologies of natural cellulose substances such as ordinary commercial laboratory filter paper make them ideal platforms for the self-assemblies of various functional guest molecules that are to be deposited on the surfaces of their fine structures, and the resulting composite matters show significant potentials for various applications. The surface sol-gel process was employed to deposit ultrathin metal-oxide (e.g., titania and zirconia) gel films to coat the cellulose nanofibers in bulk filter papers; thereafter, monolayers of specific guest substrates were immobilized onto the surfaces of the metal-oxide gel films. Highly selective, sensitive, and reversible chemosensors based on the surface modification of filter paper were obtained toward the fluorescence and colorimetric detection of various analytes such as heavy-metal ions, inorganic anions, amino acids, and gases. Cellulose-based composite materials with superhydrophobic, antibacterial, or luminescent properties were fabricated by self-assembly approaches toward practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinchi L, Cotana F, Fortunati E, Kenny JM. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym, 2013, 94: 154–169

    Article  CAS  Google Scholar 

  2. Henriksson M, Berglund LA. Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci, 2007, 106: 2817–2824

    Article  CAS  Google Scholar 

  3. Iwamoto S, Nakagaito AN, Yano H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater, 2007, 89: 461–466

    Article  CAS  Google Scholar 

  4. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed, 2005, 44: 3358–3393

    Article  CAS  Google Scholar 

  5. Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules, 2009, 10: 425–432

    Article  CAS  Google Scholar 

  6. Stenstad P, Andresen M, Tanem BS, Stenius P. Chemical surface modifications of microfibrillated cellulose. Cellulose, 2008, 15: 35–45

    Article  CAS  Google Scholar 

  7. Kalia S, Boufi S, Celli A, Kango S. Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci, 2014, 292: 5–31

    Article  CAS  Google Scholar 

  8. Gong R, Cai W, Li N, Chen J, Liang J, Cao J. Preparation and application of thiol wheat straw as sorbent for removing mercury ion from aqueous solution. Desalin Water Treat, 2010, 21: 274–279

    Article  CAS  Google Scholar 

  9. Chen ML, Ma HJ, Zhang SQ, Wang JH. Mercury speciation with L-cysteine functionalized cellulose fibre as adsorbent by atomic fluorescence spectrometry. J Anal At Spectrom, 2011, 26: 613–617

    Article  CAS  Google Scholar 

  10. Liu H, Wang D, Song Z, Shang S. Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose, 2011, 18: 67–74

    Article  CAS  Google Scholar 

  11. Shateri-Khalilabad M, Yazdanshenas ME. Fabrication of superhydrophobic, antibacterial, and ultraviolet-blocking cotton fabric. J Text Inst, 2013, 104: 861–869

    Article  CAS  Google Scholar 

  12. Zhang X, Huang J. Functional surface modification of natural cellulose substances for colorimetric detection and adsorption of Hg2+ in aqueous media. Chem Commun, 2010, 46: 6042–6044

    Article  CAS  Google Scholar 

  13. Xiao W, Luo Y, Zhang X, Huang J. Highly sensitive colourimetric anion chemosensors fabricated by functional surface modification of natural cellulose substance. RSC Adv, 2013, 3: 5318–5323

    Article  CAS  Google Scholar 

  14. Gu Y, Huang J. Colorimetric detection of gaseous ammonia by polyaniline nanocoating of natural cellulose substances. Colloid Surf A-Physicochem Eng Asp, 2013, 433: 166–172

    Article  CAS  Google Scholar 

  15. Xiao W, Hu H, Huang J. Colorimetric detection of cysteine by surface functionalization of natural cellulose substance. Sens Actuator B-Chem, 2012, 171-172: 878–885

    Article  CAS  Google Scholar 

  16. Huang J, Ichinose I, Kunitake T. Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed, 2006, 45: 2883–2886

    Article  CAS  Google Scholar 

  17. Xiao W, Huang J. Immobilization of oligonucleotides onto zirconia-modified filter paper and specific molecular recognition. Langmuir, 2011, 27: 12284–12288

    Article  CAS  Google Scholar 

  18. Li S, Wei Y, Huang J. Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach. Chem Lett, 2010, 39: 20–21

    Article  Google Scholar 

  19. Jin C, Yan R, Huang J. Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem, 2011, 21: 17519–17525

    Article  CAS  Google Scholar 

  20. Jin C, Jiang Y, Niu T, Huang J. Cellulose-based material with amphiphobicity to inhibit bacterial adhesion by surface modification. J Mater Chem, 2012, 22: 12562–12567

    Article  CAS  Google Scholar 

  21. Xiao W, Xu J, Liu X, Hu Q, Huang J. Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B, 2013, 1: 3477–3485

    Article  CAS  Google Scholar 

  22. Niu T, Gu Y, Huang J. Luminescent cellulose sheet fabricated by facile self-assembly of cadmium selenide nanoparticles on cellulose nanofibres. J Mater Chem, 2011, 21: 651–656

    Article  CAS  Google Scholar 

  23. Huang J, Ichinose I, Kunitake T. Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun, 2005, 1717-1719

  24. Díez-Gil C, Caballero A, Ratera I, Tárraga A, Molina P, Veciana J. Naked-eye and selective detection of mercury(II) ions in mixed aqueous media using a cellulose-based support. Sensors, 2007, 7: 3481–3488

    Article  Google Scholar 

  25. You J, Hu H, Zhou J, Zhang L, Zhang Y, Kondo T. Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II). Langmuir, 2013, 29: 5085–5092

    Article  CAS  Google Scholar 

  26. Poplin JH, Swatlosk RP, Holbrey JD, Spera SK, Metlen A, Grätze M, Nazeeruddin MK, Rogers RD. Sensor technologies based on a cellulose supported platform. Chem Commun, 2007, 20: 2025–2027

    Article  Google Scholar 

  27. Díez-Gil C, Martínez R, Ratera I, Tárraga A, Molina P, Veciana J. Nanocomposite membranes as highly selective and sensitive mercury( II) detectors. J Mater Chem, 2008, 18: 1997–2002

    Article  Google Scholar 

  28. Kazemzadeh A, Daghighi S. Optical nitrite sensor based on chemical modification of a polymer film. Spectroc Acta Pt A-Molec Biomolec Spectr, 2005, 61: 1871–1875

    Article  CAS  Google Scholar 

  29. Ensafi AA, Amini M. A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sens Actuator B-Chem, 2010, 147: 61–66

    Article  CAS  Google Scholar 

  30. Yasuda SK, Lambert JL. Cellulose supported thorium-alizarin red S reagent for fluoride ion determination. Anal Chem, 1958, 30: 1485–1489

    Article  CAS  Google Scholar 

  31. Tang H, Thompson JE. Evaluation of microvolume regenerated cellulose (RC) microdialysis fibers for the sampling and detection of ammonia in air. Talanta, 2010, 81: 1350–1356

    Article  CAS  Google Scholar 

  32. Peng L, Yang X, Yuan L, Wang L, Zhao E, Tian F, Liu Y. Gaseous ammoniafluorescence probe based on cellulose acetate modified microstructured optical fiber. Opt Commun, 2011, 284: 4810–4814

    Article  CAS  Google Scholar 

  33. Waich K, Mayr T, Klimant I. Microsensors for detection of ammonia at ppb-concentration levels. Meas Sci Technol, 2007, 18: 3195–3201

    Article  CAS  Google Scholar 

  34. Felix EP, Cardoso AA. A method for determination of ammonia in air using oxalic acid-impregnated cellulose filters and fluorimetric detection. J Braz Chem Soc, 2012, 23: 142–147

    Article  CAS  Google Scholar 

  35. Aied A, Zheng Y, Pandit A, Wang W. DNA immobilization and detection on cellulose paper using a surface grown cationic polymer via ATRP. Appl Mater Interfaces, 2012, 4: 826–831

    Article  CAS  Google Scholar 

  36. Liu H, Wang D, Song A, Shang S. Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose, 2011, 18: 67–74

    Article  CAS  Google Scholar 

  37. Huang J, Kunitake T. Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc, 2003, 125: 11834–11835

    Article  CAS  Google Scholar 

  38. Liu L, Xia N, Liu H, Kang X, Liu X, Xue C, He X. Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction. Biosens Bioelectron, 2014, 53: 399–405

    Article  CAS  Google Scholar 

  39. Li S, Zhang S, Wang X. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir, 2008, 24: 5585–5590

    Article  CAS  Google Scholar 

  40. Vasiljević J, Gorjanc M, Tomšič B, Orel B, Jerman I, Mozetič M, Vesel A, Simončič B. The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose, 2013, 20: 277–289

    Article  Google Scholar 

  41. Mirvakili MN, Hatzikiriakos SG, Englezo P. Superhydrophobic lignocellulosic wood fiber/mineral networks. Appl Mater Interfaces, 2013, 5: 9057–9066

    Article  CAS  Google Scholar 

  42. Balu B, Breedveld V, Hess D. Fabrication of “roll-off” and “sticky” superhydrophobic cellulose surfaces via plasma processing. Langmuir, 2008, 24: 4785–4790

    Article  CAS  Google Scholar 

  43. Wang H, Ding J, Xue Y, Wang X, Lin T. Superhydrophobic fabrics from hybrid silica sol-gel coatings: structural effect of precursors on wettability and washing durability. J Mater Res, 2010, 25: 1336–1343

    Article  CAS  Google Scholar 

  44. Zhao Y, Tang Y, Wang X, Lin T. Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Appl Surf Sci, 2010, 256: 6736–6742

    Article  CAS  Google Scholar 

  45. Gonçalves G, Marques PA, Trindade T, Neto CP, Gandini A. Superhydrophobic cellulose nanocomposites. J Colloid Interface Sci, 2008, 324: 42–46

    Article  Google Scholar 

  46. Xu B, Cai Z, Wang W, Ge F. Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorod arrays with subsequent hydrophobic modification. Surf Coat Technol, 2010, 204: 1556–1561

    Article  CAS  Google Scholar 

  47. Liu J, Huang W, Xing Y, Li R, Dai J. Preparation of durable superhydrophobic surface by sol-gel method with water glass and citric acid. J Sol-Gel Sci Technol, 2011, 58: 18–23

    Article  CAS  Google Scholar 

  48. Hao L, An Q, Xu W. Facile fabrication of superhydrophobic cotton fabric from stearyl methacrylate modified polysiloxane/silica nanocomposite. Fiber Polym, 2012, 13: 1145–1153

    Article  CAS  Google Scholar 

  49. Xu L, Zhuang W, Xu B, Cai Z. Fabrication of superhydrophobic cotton fabrics by silica hydrosol and hydrophobization. Appl Surf Sci, 2011, 257: 5491–5498

    Article  CAS  Google Scholar 

  50. Xue CH, Jia ST, Chen HZ, Wang M. Superhydrophobic cotton fabrics prepared by sol-gel coating of TiO2 and surface hydrophobization. Sci Technol Adv Mater, 2008, 9: 035001

    Article  Google Scholar 

  51. Huang L, Chen K, Lin C, Yang R, Gerhardt RA. Fabrication and characterization of superhydrophobic high opacity paper with titanium dioxide nanoparticles. J Mater Sci, 2011, 46: 2600–2605

    Article  CAS  Google Scholar 

  52. Guo R, Li Y, Lan J, Jiang S, Liu T, Yan W. Microwave-assisted synthesis of silver nanoparticles on cotton fabric modified with 3-aminopropyltrimethoxysilane. J Appl Polym Sci, 2013, 130: 3862–3868

    CAS  Google Scholar 

  53. Khalil-Abad MS, Yazdanshenas ME. Superhydrophobic antibacterial cotton textiles. J Colloid Interface Sci, 2010, 351, 293-298

  54. Shang Y, Si Y, Raza A, Yang L, Mao X, Ding B, Yu J. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation. Nanoscale, 2012, 4: 7847–7854

    Article  CAS  Google Scholar 

  55. Li L, Breedveld V, Hess DW. Design and fabrication of superamphiphobic paper surfaces. Appl Mater Interfaces, 2013, 5: 5381–5386

    Article  CAS  Google Scholar 

  56. Kang ZZ, Zhang B, Jiao YC, Xu YH, He QZ, Liang J. High-efficacy antimicrobial cellulose grafted by a novel quaternarized N-halamine. Cellulose, 2013, 20: 885–893

    Article  CAS  Google Scholar 

  57. Liu Y, Ma K, Li R, Ren X, Huang TS. Antibacterial cotton treated with N-halamine and quaternary ammonium salt. Cellulose, 2013, 20: 3123–3130

    Article  CAS  Google Scholar 

  58. Li J, Li R, Du J, Ren X, Worley SD, Huang TS. Improved UV stability of antibacterial coatings with N-halamine/TiO2. Cellulose, 2013, 20: 2151–2161

    Article  CAS  Google Scholar 

  59. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym, 2013, 94: 603–611

    Article  CAS  Google Scholar 

  60. Tang B, Kaur J, Sun L, Wang X. Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose, 2013, 20: 3053–3065

    Article  CAS  Google Scholar 

  61. Yang J, Liu X, Huang L, Sun D. Antibacterial properties of novel bacterial cellulose nanofiber containing silver nanoparticles. Chin J Chem Eng, 2013, 21: 1419–1424

    Article  CAS  Google Scholar 

  62. Wang J, Liu W, Li H, Wang H, Wang Z, Zhou W, Liu H. Preparation of cellulose fiber-TiO2 nanobelt-silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chem Eng J, 2013, 228: 271–280

    Google Scholar 

  63. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA. Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles. Molecules, 2013, 18: 6269–6280

    Article  CAS  Google Scholar 

  64. Fortunati E, Luzi F, Puglia D, Terenzi A, Vercellino M, Visai L, Santulli C, Torre L, Kenny JM. Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II. Carbohydr Polym, 2013, 97: 837–848

    Article  CAS  Google Scholar 

  65. Xu X, Yang YQ, Xing YY, Yang JF, Wang SF. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym, 2013, 98: 1573–1577

    Article  CAS  Google Scholar 

  66. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym, 2012, 87: 1596–1605

    Article  CAS  Google Scholar 

  67. Fortunati E, Rinaldi S, Peltzer M, Bloise N, Visai L, Armentano I, Jiménez A, Latterini L, Kenny JM. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohydr Polym, 2014, 101: 1122–1133

    Article  CAS  Google Scholar 

  68. Guibal E, Cambe S, Bayle S, Taulemesse JM, Vincent T. Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci, 2013, 393: 411–420

    Article  CAS  Google Scholar 

  69. Hanley CA, McCarthy JE, Purcell-Milton F, Gerard V, McCloskey D, Donegan J, Rakovich YP, Gun’ko YK. Preperation and investigation of quantum-dot-loaded hollow polymer microspheres. J Phys Chem C, 2013, 117: 24527–24536

    Article  CAS  Google Scholar 

  70. Tian J, Gao R, Zhang Q, Zhang S, Li Y, Lan J, Qu X, Cao G. Enhanced performance of CdS/CdSe quantum dot cosensitized solar cells via homogeneous distribution of quantum dots in TiO2 film. J Phys Chem C, 2012, 116: 18655–18662

    Article  CAS  Google Scholar 

  71. Zhu YF, Fan DH, Zhou GH, Lin YB, Liu L. A suitable chemical conversion route to synthesize ZnO/CdS core/shell heterostructures for photovoltaic applications. Ceram Int, 2014, 40: 3353–3359

    Article  CAS  Google Scholar 

  72. Chen C, Li F, Li G, Tan F, Li S, Ling L. Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. J Mater Sci, 2014, 49: 1868–1874

    Article  CAS  Google Scholar 

  73. Li S, Xiao M, Zheng A, Xiao H. Cellulose microfibrils grafted with PBA via surface-initiated atom transfer radical polymerization for biocomposite reinforcement. Biomacromolecules, 2011, 12: 3305–3312

    Article  CAS  Google Scholar 

  74. Xiao M, Li S, Chanklin W, Zheng A, Xiao H. Surface-initiated atom transfer radical polymerization of butyl acrylate on cellulose microfibrils. Carbohydr Polym, 2011, 83: 512–519

    Article  CAS  Google Scholar 

  75. Toledano-Thompson T, Loría-Bastarrachea MI, Aguilar-Vega MJ. Characterization of henequen cellulose microfibers treated with an epoxide and grafted with poly (acrylic acid). Carbohydr Polym, 2005, 62: 67–73

    Article  CAS  Google Scholar 

  76. Li J, Möhwald H, An Z, Lua G. Molecular assembly of biomimetic microcapsules. Soft Matter, 2005, 1: 259–264

    Article  Google Scholar 

  77. He Q, Cui Y, Li J. Molecular assembly and application of biomimetic microcapsules. Chem Soc Rev, 2009, 38: 2292–2303

    Article  CAS  Google Scholar 

  78. An Z, Möhwald H, Li J. pH controlled permeability of lipid/protein biomimetic microcapsules. Biomacromolecule, 2006, 7: 580–585

    Article  CAS  Google Scholar 

  79. He Q, Möhwald H, Li J. Layer-by-layer assembled nanotubes as biomimetic nanoreactors for calcium carbonate deposition. Macromol Rapid Commun, 2009, 30: 1538–1542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianGuo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Huang, J. Surface modification of natural cellulose substances: toward functional materials and applications. Sci. China Chem. 57, 1672–1682 (2014). https://doi.org/10.1007/s11426-014-5226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5226-4

Keywords

Navigation