Skip to main content
Log in

A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage

  • Articles
  • Special Issue Organic Photovoltaics
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A new solution-processable small-molecule donor material, named DRBDT3, comprised of oligobenzo[1,2-b:4,5-b′] dithiophene as the backbone and 3-ethyl-rhodanine as the end-capped group has been designed and synthesized for application in organic photovoltaic cells. The oligobenzodithiophene derivative exhibits an absorption band from 300 to 640 nm. The film of DRBDT3 shows highly long-range ordering assembly and high mobility of 1.21×10−4 cm2 V−1 s−1. The new molecule shows a deep highest-occupied molecular orbital energy level. The device based on DRBDT3 as the donor and PC71BM as the acceptor exhibits a power conversion efficiency of 4.09% with a high open-circuit voltage of 0.99 V under AM.1.5G illumination (100 mW cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen JW, Cao Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res, 2009, 42: 1709–1718

    Article  CAS  Google Scholar 

  2. Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  Google Scholar 

  3. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. Acc Chem Res, 2014, 47: 1595–1603

    Article  CAS  Google Scholar 

  4. Heeger AJ. Semiconducting polymers: the third generation. Chem Soc Rev, 2010, 39: 2354–2371

    Article  CAS  Google Scholar 

  5. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger, AJ, Brabec CJ. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv Mater, 2006, 18: 789–794

    Article  CAS  Google Scholar 

  6. Duan CH, Wang CD, Liu SJ, Huang F, Choy CHW, Cao Y. Two-dimensional like conjugated copolymers for high efficiency bulk-heterojunction solar cell application: band gap and energy level engineering. Sci China Chem, 2011, 54: 685–694

    Article  CAS  Google Scholar 

  7. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A. Materials and applications for large area electronics: solution-based approaches. Chem Rev, 2010, 110: 3–24

    Article  CAS  Google Scholar 

  8. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photon, 2009, 3: 649–653

    Article  CAS  Google Scholar 

  9. Qian D, Ma W, Li ZJ, Guo X, Zhang SQ, Ye L, Ade H, Tan ZA, Hou JH. Molecular design toward efficient polymer solar cells with high polymer content. J Am Chem Soc, 2013, 135: 8464–8467

    Article  CAS  Google Scholar 

  10. Deng YF, Bao C, Tian HK, Xie ZY, Geng YH. Synthesis of conjugated polymers based on dithieno[3,2-b:2′,3′-d] phosphole oxides and their applications in thin-film transistors and bulk heterojunction solar cells. Acta Polym Sinica, 2013: 609–618

    Google Scholar 

  11. Deng YF, Liu J, Wang JT, Liu LH, Li WL, Tian HK, Zhang XJ, Xie ZY, Geng YH, Wang FS. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater, 2014, 26: 471–476

    Article  CAS  Google Scholar 

  12. Xiao ZG, Yuan YB, Yang B, VanDerslice J, Chen JH, Dyck O, Duscher G, Huang JS. Universal formation of compositionally graded bulk heterojunction for efficiency enhancement in organic photovoltaics. Adv Mater, 2014, 26: 3068–3075

    Article  CAS  Google Scholar 

  13. Yang TB, Qin DH, Lan LF, Huang WB, Gong X, Peng JB, Cao Y. Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Sci China Chem, 2012, 55: 755–759

    Article  CAS  Google Scholar 

  14. Yang SP, Zhang Y, Jiang T, Sun XF, Lu CQ, Li G, Li XW, Fu GS. Enhancing the power conversion efficiency of pcdtbt:Pc71bm polymer solar cells using a mixture of solvents. Chin Sci Bull, 2014, 59: 297–300

    Article  CAS  Google Scholar 

  15. Song HY, Tong H, Xie ZY, Wang LX, Wang FS. Synthesis, characterization and solar cell application of a D-A copolymer with cyclopentadithiophene and fluorene as donor units. Chin J Polym Sci, 2013, 31: 1117–1126

    Article  CAS  Google Scholar 

  16. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon, 2012, 6: 591–595

    Google Scholar 

  17. Guo X, Zhang MJ, Ma W, Ye L, Zhang SQ, Liu SJ, Ade H, Huang F, Hou JH. Enhanced photovoltaic performance by modulating surface composition in bulk heterojunction polymer solar cells PBDTTT-CT/PC71BM. Adv Mater, 2014, 26: 4043–4049

    Article  CAS  Google Scholar 

  18. Zhang WJ, Wu YL, Bao QY, Gao F, Fang JF. Morphological control for highly efficient inverted polymer solar cells via the backbone design of cathode interlayer materials. Adv Energy Mater, 2014, 4, doi: 10.1002/aenm.201400359

    Google Scholar 

  19. Liao SH, Jhuo HJ, Cheng YS, Chen SA. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-TH) for high performance. Adv Mater, 2013, 25: 4766–4771

    Article  CAS  Google Scholar 

  20. You JB, Dou LT, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun, 2013, 4: 1446

    Article  Google Scholar 

  21. Ye L, Zhang SQ, Zhao WC, Yao HF, Hou JH. Highly efficient 2d-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605

    Article  CAS  Google Scholar 

  22. Lin YZ, Zhang ZG, Bai HT, Li YF, Zhan XW. A star-shaped oligothiophene end-capped with alkyl cyanoacetate groups for solution-processed organic solar cells. Chem Commun, 2012, 48: 9655–9657

    Article  CAS  Google Scholar 

  23. Zeng SH, Yin LX, Ji CY, Jiang XY, Li KC, Li YQ, Wang Y. D-p-A-p-D type benzothiadiazole-triphenylamine based small molecules containing cyano on the p-bridge for solution-processed organic solar cells with high open-circuit voltage. Chem Commun, 2012, 48: 10627–10629

    Article  CAS  Google Scholar 

  24. Shen SL, Jiang P, He C, Zhang J, Shen P, Zhang Y, Yi YP, Zhang ZJ, Li ZB, Li YF. Solution-processable organic molecule photovoltaic materials with bithienyl-benzodithiophene central unit and indenedione end groups. Chem Mater, 2013, 25: 2274–2281

    Article  CAS  Google Scholar 

  25. Lin YZ, Ma LC, Li YF, Liu YQ, Zhu DB, Zhan XW. A solution-processable small molecule based on benzodithiophene and dike-topyrrolopyrrole for high-performance organic solar cells. Adv Energy Mater, 2013, 3: 1166–1170

    Article  CAS  Google Scholar 

  26. Gao L, Zhang J, He C, Shen SL, Zhang Y, Liu HT, Sun QJ, Li YF. Synthesis and photovoltaic properties of a star-shaped molecule based on a triphenylamine core and branched terthiophene end groups. Sci China Chem, 2013, 56: 997–1003

    Article  CAS  Google Scholar 

  27. Tang WL, Huang DZ, He C, Yi YP, Zhang J, Di CA, Zhang ZJ, Li YF. Solution-processed small molecules based on indacenodithiophene for high performance thin-film transistors and organic solar cells. Org Electron, 2014, 15: 1155–1165

    Article  CAS  Google Scholar 

  28. Chen YH, Du ZK, Chen WC, Liu Q, Sun L, Sun ML, Yang RQ. Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Org Electron, 2014, 15: 405–413

    Article  CAS  Google Scholar 

  29. Yong WN, Zhang MJ, Xin XD, Li ZJ, Wu Y, Guo X, Yang Z, Hou JH. Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. J Mater Chem A, 2013, 1: 14214–14220

    Article  CAS  Google Scholar 

  30. Qin HM, Li LS, Guo FQ, Su SJ, Peng JB, Cao Y, Peng XB. Solution-processed bulk heterojunction solar cells based on a porphyrin small molecule with 7% power conversion efficiency. Energy Environ Sci, 2014, 7: 1397–1401

    Article  CAS  Google Scholar 

  31. Shang HX, Fan HJ, Liu Y, Hu WP, Li YF, Zhan XW. A solution-processable star-shaped molecule for high-performance organic solar cells. Adv Mater, 2011, 23: 1554–1557

    Article  CAS  Google Scholar 

  32. Zhou JY, Wan XJ, Liu YS, Zuo Y, He GR, Long GK, Ni W, Li CX, Chen YS. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene unit for high-performance solution-processed organic solar cells. J Am Chem Soc, 2012, 134: 16345–16351

    Article  CAS  Google Scholar 

  33. Zhou JY, Zuo Y, Wan XJ, Long GK, Zhang Q, Ni W, Liu YS, Li Z, He GR, Li CX, Kan B, Li MM, Chen YS. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J Am Chem Soc, 2013, 135: 8484–8487

    Article  CAS  Google Scholar 

  34. Kyaw AKK, Wang DH, Wynands D, Zhang J, Nguyen, TQ, Bazan GC, Heeger AJ. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett, 2013, 13: 3796–3801

    Article  CAS  Google Scholar 

  35. Liu YS, Chen CC, Hong ZR, Gao J, Yang Y, Zhou HP, Dou LT, Li G. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep, 2013, 3: 3356

    Google Scholar 

  36. Chen YS, Wan XJ, Long GK. High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res, 2013, 46: 2645–2655

    Article  CAS  Google Scholar 

  37. Lin YZ, Li YF, Zhan XW. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem Soc Rev, 2012, 41: 4245–4272

    Article  CAS  Google Scholar 

  38. Coughlin JE, Henson ZB, Welch GC, Bazan GC. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc Chem Res, 2013, 47: 257–270

    Article  Google Scholar 

  39. Lin YZ, Ma LC, Li YF, Zhu DB, Zhan XW. Small-molecule solar cells with fill factors up to 0.75 via a layer-by-layer solution process. Adv Energy Mater, 2014, 4: 1300626

    Google Scholar 

  40. Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Sci China Chem, 2014, 57: 973–981

    Article  CAS  Google Scholar 

  41. Huang QL, Li HX. Recent progress of bulk heterojunction solar cells based on small-molecular donors. Chin Sci Bull, 2013, 58: 2677–2685

    Article  CAS  Google Scholar 

  42. Hou JH, Park MH, Zhang SQ, Yao Y, Chen LM, Li JH, Yang Y. Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b:4,5-b′]dithiophene. Macromolecules, 2008, 41: 6012–6018

    Article  CAS  Google Scholar 

  43. Liang YY, Feng DQ, Wu Y, Tsai ST, Li G, Ray C, Yu LP. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc, 2009, 131: 7792–7799

    Article  CAS  Google Scholar 

  44. Pan H, Wu Y, Li Y, Liu P, Ong BS, Zhu S, Xu G. Benzodithiophene copolymer: a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv Funct Mater, 2007, 17: 3574–3579

    Article  CAS  Google Scholar 

  45. Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y. A polybenzo-[1,2-b:4,5-b′]dithiophene derivative with deep homo level and its application in high-performance polymer solar cells. Angew Chem Int Ed, 2010, 49: 1500–1503

    Article  CAS  Google Scholar 

  46. Zhou HX, Yang LQ, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45: 607–632

    Article  CAS  Google Scholar 

  47. Lee D, Hubijar E, Kalaw GJD, Ferraris JP. Enhanced and tunable open-circuit voltage using dialkylthio benzo[1,2-b:4,5-b′]dithiophene in polymer solar cells. Chem Mater, 2012, 24: 2534–2540

    Article  CAS  Google Scholar 

  48. He GR, Li Z, Wan XJ, Liu YS, Zhou JY, Long GK, Zhang MT, Chen YS. Impact of dye end groups on acceptor-donor-acceptor type molecules for solution-processed photovoltaic cells. J Mater Chem, 2012, 22: 9173–9180

    Article  CAS  Google Scholar 

  49. Long GK, Wan XJ, Kan B, Liu YS, He GR, Li Z, Zhang YW, Zhang Y, Zhang Q, Zhang MT, Chen YS. Investigation of quinquethiophene derivatives with different end groups for high open circuit voltage solar cells. Adv Energy Mater, 2013, 3: 639–646

    Article  CAS  Google Scholar 

  50. Li Z, He GR, Wan XJ, Liu YS, Zhou JY, Long GK, Zuo Y, Zhang MT, Chen YS. Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6.1%. Adv Energy Mater, 2012, 2: 74–77

    Article  CAS  Google Scholar 

  51. Schulze K, Uhrich C, Schüppel R, Leo K, Pfeiffer M, Brier E, Reinold E, Bäuerle P. Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60. Adv Mater, 2006, 18: 2872–2875

    Article  CAS  Google Scholar 

  52. Beek WJE, Wienk MM, Kemerink M, Yang XN, Janssen RAJ. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J Phys Chem B, 2005, 109: 9505–9516

    Article  CAS  Google Scholar 

  53. Yang XN, Loos J, Veenstra SC, Verhees, WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen RAJ. Nanoscale morphology of high-performance polymer solar cells. Nano Lett, 2005, 5: 579–583

    Article  CAS  Google Scholar 

  54. Garcia-Belmonte G, Munar A, Barea EM, Bisquert J, Ugarte I, Pacios R. Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org Electron, 2008, 9: 847–851

    Article  CAS  Google Scholar 

  55. Peumans P, Yakimov A, Forrest SR. Small molecular weight organic thin-film photodetectors and solar cells. Appl Phys Lett, 2003, 93: 3693–3723

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjian Wan or Yongsheng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Li, M., Wan, X. et al. A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Sci. China Chem. 58, 339–346 (2015). https://doi.org/10.1007/s11426-014-5220-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5220-x

Keywords

Navigation