Skip to main content
Log in

Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes

  • Articles
  • Special Topic: Chemical Challenges in Nuclear Fuel Cycle
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The influences of pH, contact time, solid-liquid ratio, temperature and C60(C(COOH)2) n on Th(IV) adsorption onto the magnetic multi-walled carbon nanotubes (MMWCNTs) were studied by batch technique. The dynamic process showed that the adsorption of Th(IV) onto MMWCNTs could reach equilibrium in 40 h and matched the pseudo-second-order kinetics model. The adsorption of Th(IV) onto MMWCNTs was significantly dependent on pH values, the adsorption ratio increased markedly at pH 3.0–5.0, and then maintained a steady state as pH values increased. At low pH, different C60(C(COOH)2) n content could enhance the adsorption content of Th(IV) onto MMWCNTs, but restrained it at higher pH. Through simulating the adsorption isotherms by Langmuir, Freundlich and Dubini-Radushkevich models, it could be seen respectively that the adsorption pattern of Th(IV) onto MMWCNTs was mainly surface complexation, and that the adsorption process was endothermic and irreversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu D, Chen CL, Tan XL, Hu J, Wang XK. Sorption of Th(IV) on Na-rectorite: effect of HA, ionic strength, foreign ions and temperature. Appl Geochem, 2007, 22: 2892–2906

    Article  CAS  Google Scholar 

  2. Guo ZJ, Niu LJ, Tao ZY. Sorption of Th(IV) ions onto TiO2: effects of contact time, ionic strength, thorium concentration and phosphate. J Radioanal Nucl Chem, 2005, 266: 333–338

    Article  CAS  Google Scholar 

  3. Wu WS, Fan QH, Xu JZ, Niu ZW, Lu SS. Sorption-desorption of Th(IV) on attapulgite: effects of pH, ionic strength and temperature. Appl Radiat Isot, 2007, 65: 1108–1114

    Article  CAS  Google Scholar 

  4. Chen C, Wang X. Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl Radiat Isot, 2007, 65: 155–163

    Article  CAS  Google Scholar 

  5. Wang J, Li Z, Li SC, Qi W, Liu P, Liu YL, Ye YL, Wu LS, Wang L, Wu WS. Adsorption of Cu (II) on oxidized multi-walled carbon nanotubes in the presence of hydroxylated and carboxylated fullerenes. PloS One, 2013, 8: e72475

    Article  CAS  Google Scholar 

  6. Tang WW, Zeng GM, Gong JL, Liu Y, Wang XY, Liu YY, Liu ZF, Chen L, Zhang XR, Tu DZ. Simultaneous adsorption of atrazine and Cu(II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J, 2012, 221: 470–478

    Article  Google Scholar 

  7. Sun K, Zhang ZY, Gao B, Wang ZY, Xu DY, Jin J, Liu XT. Adsorption of diuron, fluridone and norflurazon on single-walled and multi-walled carbon nanotubes. Sci Total Environ, 2012, 439: 1–7

    Article  CAS  Google Scholar 

  8. Abbaspour A, Izadyar A. Carbon nanotube composite coated platinum electrode for detection of Cr(III) in real samples. Talanta, 2007, 71: 887–892

    Article  CAS  Google Scholar 

  9. Heath JR. Nanoscale materials. Accounts Chem Res, 1999, 32: 388

    Article  CAS  Google Scholar 

  10. Schierz A, Zänker H. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut, 2009, 157: 1088–1094

    Article  CAS  Google Scholar 

  11. Xu D, Tan XL, Chen CL, Wang XK. Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater, 2008, 154: 407–416

    Article  CAS  Google Scholar 

  12. Yang ST, Li JX, Shao DD, Hu J, Wang XK. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. J Hazard Mater, 2009, 166: 109–116

    Article  CAS  Google Scholar 

  13. Tian XL, Li TT, Yang K, Xu Y, Lu HF, Lin DH. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes. Chemosphere, 2012, 89: 1316–1322

    Article  CAS  Google Scholar 

  14. Wang F, Yao J, Chen HL, Yi ZJ, Xing BS. Sorption of humic acid to functionalized multi-walled carbon nanotubes. Environ Pollut, 2013, 180: 1–6

    Article  Google Scholar 

  15. Lu SS, Chen L, Dong YH, Chen YX. Adsorption of Eu (III) on iron oxide/multiwalled carbon nanotube magnetic composites. J Radioanal Nucl Chem, 2011, 288: 587–593

    Article  CAS  Google Scholar 

  16. Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol, 2008, 42: 4416–4421

    Article  CAS  Google Scholar 

  17. Bühl M, Hirsch A. Spherical aromaticity of fullerenes. Chem Rev, 2001, 101: 1153–1183

    Article  Google Scholar 

  18. Montes-Moran M, Suárez D, Menéndez JA, Fuente E. On the nature of basic sites on carbon surfaces: an overview. Carbon, 2004, 42: 1219–1225

    Article  CAS  Google Scholar 

  19. Troshin PA, Hoppe H, Renz J, Egginger M, Mayorova JY, Goryachev AE, Peregudov AS, Lyubovskaya RN, Gobsch G, Serdar Sariciftci N, Razumov VF. Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv Funct Mater, 2009, 19: 779–788

    Article  CAS  Google Scholar 

  20. Fan XJ, Li X, Preparation and magnetic property of multiwalled carbon nanotubes decorated by Fe3O4 nanoparticles. New Carbon Mater, 2012, 27: 111–116

    Article  CAS  Google Scholar 

  21. Cheng FY, Yang XL, Zhu HS, Sun J, Liu Y. Synthesis of oligoadducts of malonic acid C60 and their scavenging effects on hydroxyl radical. J Phys Chem Solids, 2000, 61: 1145–1148

    Article  CAS  Google Scholar 

  22. Sheng G, Hu J, Wang X. Sorption properties of Th(IV) on the raw diatomite: effects of contact time, pH, ionic strength and temperature. Appl Radiat Isot, 2008, 66: 1313–1320

    Article  CAS  Google Scholar 

  23. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS. Effect of pH, fulvic acid and temperature on sorption of Th(IV) on zirconium oxophosphate. J Radioanal Nucl Chem, 2010, 283: 653–660

    Article  CAS  Google Scholar 

  24. Wang MM, Tao XQ, Song XP. Effect of pH, ionic strength and temperature on sorption characteristics of Th (IV) on oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem, 2011, 288: 859–865

    Article  CAS  Google Scholar 

  25. Li P, Fan QH, Pan DQ, Liu SP, Wu WS. Effects of pH, ionic strength, temperature, and humic acid on Eu(III) sorption onto iron oxides. J Radioanal Nucl Chem, 2011, 289: 757–764

    Article  CAS  Google Scholar 

  26. Chen SW, Guo BL, Wang YL, Li Y, Song LJ. Study on sorption of U(VI) onto ordered mesoporous silicas. J Radioanal Nucl Chem, 2013, 295: 1435–1442

    Article  CAS  Google Scholar 

  27. Tan XL, Wang XK, Fang M, Chen CL. Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloid Surface A, 2007, 296: 109–116

    Article  CAS  Google Scholar 

  28. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc, 1918, 40: 1361–1403

    Article  CAS  Google Scholar 

  29. Freundlich HMF. Over the adsorption in solution. J Phys Chem, 1906, 57: 1100–1107

    Google Scholar 

  30. Dubinin M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev, 1960, 60: 235–241

    Article  CAS  Google Scholar 

  31. Özcan AE, Öncü EM, Özcan AS. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloid Surface A, 2006, 277: 90–97

    Article  Google Scholar 

  32. Lin SH, Wang CS. Treatment of high-strength phenolic wastewater by a new two-step method. J Hazard Mater, 2002, 90: 205–216

    Article  CAS  Google Scholar 

  33. Chen L, Gao X. Thermodynamic study of Th(IV) sorption on attapulgite. Appl Radiat Isot, 2009, 67: 1–6

    Article  CAS  Google Scholar 

  34. Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW. Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite. Radiochim Acta, 2008, 96: 159–165

    CAS  Google Scholar 

  35. Yu SM, Ren AP, Chen CL, Chen YX, Wang X. Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite. Appl Radiat Isot, 2006, 64: 455–461

    Article  CAS  Google Scholar 

  36. Xu D, Zhou X, Wang XK. Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences. Appl Clay Sci, 2008, 39: 133–141

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WangSuo Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Qi, W., Du, Y. et al. Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci. China Chem. 57, 1483–1490 (2014). https://doi.org/10.1007/s11426-014-5204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5204-x

Keywords

Navigation