Skip to main content
Log in

Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

UO2 2+, which is extracted from the aqueous phase into the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mimNTf2) ionic liquid phase with octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), can be stripped by supercritical CO2. Trioctylphosphine oxide (TOPO), the modifier added to the supercritical CO2 phase, enhances the stripping efficiency by up to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun XQ, Luo HM, Dai S. Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev, 2012, 112: 2100–2128

    Article  CAS  Google Scholar 

  2. Rogers RD, Seddon KR. Ionic liquids: solvents of the future? Science, 2003, 302: 792–793

    Article  Google Scholar 

  3. Billard I, Ouadi A, Gaillard C. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding. Anal Bioanal Chem, 2011, 400: 1555–1566

    Article  CAS  Google Scholar 

  4. Billard I, Ouadi A, Jobin E, Champion J, Gaillard C, Georg S. Understanding the extraction mechanism in ionic liquids: UO2 2+/ HNO3/TBP/C4mimNTf2 as a case study. Solvent Extr Ion Exch, 2011, 29: 577–601

    Article  CAS  Google Scholar 

  5. Sun TX, Shen XH, Chen QD, Ma JY, Zhang S, Huang YY. Identification of F and SO4 2− as the radiolytic products of the ionic liquid C4mimNTf2 and their effect on the extraction of UO2 2+. Radiat Phys Chem, 2013, 83: 74–78

    Article  CAS  Google Scholar 

  6. Shen YL, Tan XW, Wang L, Wu WS. Extraction of the uranyl ion from the aqueous phase into an ionic liquid by diglycolamide. Sep Purif Technol, 2011, 78: 298–302

    Article  CAS  Google Scholar 

  7. Visser AE, Jensen MP, Laszak I, Nash KL, Choppin GR, Rogers RD. Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg Chem, 2003, 42: 2197–2199

    Article  CAS  Google Scholar 

  8. Ouadi A, Klimchuk O, Gaillard C, Billard I. Solvent extraction of U(VI) by task specific ionic liquids bearing phosphoryl groups. Green Chem, 2007, 9: 1160–1162

    Article  CAS  Google Scholar 

  9. Visser AE, Rogers RD. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J Solid State Chem, 2003, 171: 109–113

    Article  CAS  Google Scholar 

  10. Nakashima K, Kubota F, Maruyama T, Goto M. Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes. Ind Eng Chem Res, 2005, 44: 4368–4372

    Article  CAS  Google Scholar 

  11. Mohapatra PK, Kandwal P, Iqbal M, Huskens J, Murali MS, Verboom W. A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans, 2013, 42: 4343–4347

    Article  CAS  Google Scholar 

  12. Sun TX. Application of ionic liquids in the extraction of Sr, Cs, U and Tc. Doctor Dissertation. Beijing: Peking University, 2013

    Google Scholar 

  13. Zhao H, Xia SQ, Ma PS. Use of ionic liquids as “green” solvents for extractions. J Chem Technol Biotechnol, 2005, 80: 1089–1096

    Article  CAS  Google Scholar 

  14. Xu C. Application of ionic liquids in extraction and separation of metal ions. Doctor Dissertation. Beijing: Peking University, 2009

    Google Scholar 

  15. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Rao PRV. Extraction of uranium (VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloy Compd, 2008, 448: 104–108

    Article  CAS  Google Scholar 

  16. Wu JK, Shen XH, Chen QD. Electrochemical behavior of the system of uranium(VI) extraction with CMPO-ionic liquid. Acta Phys Chim Sin, 2013, 29: 1705–1711

    CAS  Google Scholar 

  17. Blanchard LA, Hancu D, Beckman EJ, Brennecke JF. Green processing using ionic liquids and CO2. Nature, 1999, 399: 28–29

    Article  Google Scholar 

  18. Kazarian SG, Briscoe BJ, Welton T. Combining ionic liquids and supercritical fluids: in situ ATR-IR study of CO2 dissolved in two ionic liquids at high pressures. Chem Commun, 2000: 2047–2048

    Google Scholar 

  19. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O. A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids, 2007, 43: 150–180

    Article  CAS  Google Scholar 

  20. Mekki S, Wai CM, Billard I, Moutiers G, Yen CH, Wang JS, Ouadi A, Gaillard C, Hesemann P. Cu(II) extraction by supercritical fluid carbon dioxide from a room temperature ionic liquid using fluorinated beta-diketones. Green Chem, 2005, 7: 421–423

    Article  CAS  Google Scholar 

  21. Mekki S, Wai CM, Billard I, Moutiers G, Burt J, Yoon B, Wang JS, Gaillard C, Ouadi A, Hesemann P. Extraction of lanthanides from aqueous solution by using room-temperature ionic liquid and supercritical carbon dioxide in conjunction. Chem-Eur J, 2006, 12: 1760–1766

    Article  CAS  Google Scholar 

  22. Wang JS, Sheaff CN, Yoon B, Addleman RS, Wai CM. Extraction of uranium from aqueous solutions by using ionic liquid and supercritical carbon dioxide in conjunction. Chem-Eur J, 2009, 15: 4458–4463

    Article  CAS  Google Scholar 

  23. Fu J, Chen QD, Sun TX, Shen XH. Extraction of Th(IV) from aqueous solution by room-temperature ionic liquids and coupled with supercritical carbon dioxide stripping. Sep Purif Technol, 2013, 119: 66–71

    Article  CAS  Google Scholar 

  24. Meguro Y, Iso S, Sasaki T, Yoshida Z. Solubility of organophosphorus metal extractants in supercritical carbon dioxide. Anal Chem, 1998, 70: 774–779

    Article  CAS  Google Scholar 

  25. Rao A, Kumar P, Ramakumar KL. Separation of uranium from different uranium oxide matrices employing supercritical carbon dioxide extraction. J Radioanal Nucl Chem, 2010, 285: 247–257

    Article  CAS  Google Scholar 

  26. Iso S, Uno S, Meguro Y, Sasaki T, Yoshida Z. Pressure dependence of extraction behavior of plutonium and uranium(VI) from nitric acid solution to supercritical carbon dioxide containing tributylphosphate. Prog Nucl Energy, 2000, 37: 423–428

    Article  CAS  Google Scholar 

  27. Paul A, Mandal PK, Samanta A. How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, bmimPF6. Chem Phys Lett, 2005, 402: 375–379

    Article  CAS  Google Scholar 

  28. Wang W, Yang HJ, Hua JC, Guo CY. Extraction of metal ions with non-fluorous bipyridine derivatives as chelating ligands in supercritical carbon dioxide. J Supercrit Fluids, 2009, 51: 181–187

    Article  Google Scholar 

  29. Yamini Y, Saleh A, Khajeh M. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum(IV) and rhenium(VII) from a solid matrix using cyanex 301. Sep Purif Technol, 2008, 61: 109–114

    Article  CAS  Google Scholar 

  30. Pourmortazavi SM, Hajimirsadeghi SS, Kohsari I, Hosseini SG. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of different metals from a solid matrix with cyanex 301 as a ligand. J Chem Eng Data, 2004, 49: 1530–1534

    Article  CAS  Google Scholar 

  31. Nejad SJ, Abolghasemi H, Moosavian MA, Maragheh MG. Fractional factorial design for the optimization of supercritical carbon dioxide extraction of La3+, Ce3+ and Sm3+ ions from a solid matrix using bis(2,4,4-trimethylpentyl)dithiophosphinic acid plus tributylphosphate. Chem Eng Res Des, 2011, 89: 827–835

    Article  CAS  Google Scholar 

  32. Wu WZ, Li WJ, Han BX, Jiang T, Shen D, Zhang ZF, Sun DH, Wang B. Effect of organic cosolvents on the solubility of ionic liquids in supercritical CO2. J Chem Eng Data, 2004, 49: 1597–1601

    Article  CAS  Google Scholar 

  33. Wu WZ, Zhang JM, Han BX, Chen JW, Liu ZM, Jiang T, He J, Li WJ. Solubility of room-temperature ionic liquid in supercritical CO2 with and without organic compounds. Chem Commun, 2003: 1412–1413

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingHai Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Chen, Q. & Shen, X. Stripping of uranium from an ionic liquid medium by TOPO-modified supercritical carbon dioxide. Sci. China Chem. 58, 545–550 (2015). https://doi.org/10.1007/s11426-014-5162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5162-3

Keywords

Navigation