Skip to main content
Log in

Preparation of a scorpion-shaped di-NBD derivative of cholesterol and its thixotropic property

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A scorpion-shaped di-NBD (4-substituted-7-nitrobenzoxadiazole) derivative of cholesterol (Chol-2NBD) was designed and synthesized. The gelation behaviors of the compound in a series of single and mixed liquids were tested. It was shown that the compound is an effective gelator for mixture liquids of THF and benzene at room temperature. Furthermore, FT-IR and temperature-/concentration-dependent 1H NMR spectroscopy studies revealed that hydrogen bonding and π-π stacking among the molecules of Chol-2NBD are two main driving forces for the physical gelation of the mixture liquids. Interestingly, as observed in the gelation test and confirmed by rheological studies, the Chol-2NBD-THF/benzene gel systems, at least the one with 2:8 of the volume ratio of THF to benzene, are mechanically stable, but very sensitive to the stimulus of shear stress, which means that the gel changes into a liquid upon shaking. More interestingly, the liquid returns to gel instantly once the shear stress is removed. This phase transition process could be repeated for many times at room temperature. In addition, primary tests demonstrated that the fluorescence emission of Chol-2NBD is significantly quenched by the presence of water, ammonia water, or ammonia gas, but the emission recovers after evaporation of them. Further detailed investigation is under progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flory PJ. Introduction lecture. Faraday Discuss Chem Soc, 1974, 57: 7–18

    Article  CAS  Google Scholar 

  2. Ajayaghosh A, Chithra P, Varghese R. Self-assembly of tripodal squaraines: cation-assisted expression of molecular chirality and change from spherical to helical morphology. Angew Chem Int Ed, 2007, 46: 230–233

    Article  CAS  Google Scholar 

  3. Wei TB, Dang JP, Lin Q, Yao H, Liu Y, Zhang WQ, Ming JJ, Zhang YM. Novel smart supramolecular metallo-hydrogel that could selectively recognize and effectively remove Pb2+ in aqueous solution. Sci China Chem, 2012, 55: 2554–2561

    Article  CAS  Google Scholar 

  4. George M, Weiss RG. Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc Chem Res, 2006, 39: 489–497

    Article  CAS  Google Scholar 

  5. Yang XY, Zhang DQ, Zhang GX, Zhu DB. Tetrathiafulvalene (TTF)-based gelators: stimuli responsive gels and conducting nanostructures. Sci China Chem, 2011, 54: 596–602

    Article  CAS  Google Scholar 

  6. Sangeetha NM, Maitra U. Supramolecular gels: functions and uses. Chem Soc Rev, 2005, 34: 821–836

    Article  CAS  Google Scholar 

  7. Rozner S, Garti N. The activity and absorption relationship of cholesterol and phytosterols. Colloids Surf A, 2006, 282-283: 435–456

    Article  Google Scholar 

  8. Duan PF, Li YG, Jiang J, Wang TY, Liu MH. Towards a universal organogelator: a general mixing approach to fabricate various organic compounds into organogels. Sci China Chem, 2011, 54: 1051–1063

    Article  CAS  Google Scholar 

  9. Ajayaghosh A, Praveen VK. p-Organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape and functions. Acc Chem Res, 2007, 40: 644–656

    Article  CAS  Google Scholar 

  10. Maeda H, Haketa Y, Nakanishi T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J Am Chem Soc, 2007, 129: 13661–13674

    Article  CAS  Google Scholar 

  11. Zhu GY, Dordick JS. Solvent effect on organogel formation by low molecular weight molecules. Chem Mater, 2006, 18: 5988–5995

    Article  CAS  Google Scholar 

  12. Hirst AR, Coates IA, Boucheteau TR, Miravet JF, Escuder B, Castelletto V, Hamley IW, Smith DK. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model. J Am Chem Soc, 2008, 130: 9113–9121

    Article  CAS  Google Scholar 

  13. Ihara H, Sakurai T, Yamada T, Hashimoto T, Takafuji M, Sagawa T, Hachisako H. Chirality control of self-assembling organogels from a lipophilic L-glutamide derivative with metal chlorides. Langmuir, 2002, 18: 7120–7123

    Article  CAS  Google Scholar 

  14. Liu KQ, He PL, Fang Y. Progress in the studies of low-molecular mass gelators. Sci China Chem, 2011, 54: 575–586

    Article  CAS  Google Scholar 

  15. Lloyd GO, Steed JW. Anion-tuning of supramolecular gel properties. Nat Chem, 2009, 1: 437–442

    Article  CAS  Google Scholar 

  16. Steed JW, Atwood JL. Supramolecular Chemistry. 2nd ed. Chippenham, UK: John Wiley and Sons, 2009

    Book  Google Scholar 

  17. Hirst AR, Escuder B, Miravet JF, Smith DK. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew Chem Int Ed, 2008, 47: 8002–8018

    Article  CAS  Google Scholar 

  18. Lehn JM. Toward complex matter: supramolecular chemistry and self-organization. Proc Nati Acad Sci USA, 2002, 99: 4763–4768

    Article  CAS  Google Scholar 

  19. Lehn JM. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev, 2007, 36: 151–160

    Article  CAS  Google Scholar 

  20. Noh E, Park S, Kang S, Lee JY, Jung JH. Remarkable reinforcement of a supramolecular gel constructed by heteroditopic [18]-crown-6-based molecular recognition. Chem Eur J, 2013, 19: 2620–2627

    Article  CAS  Google Scholar 

  21. Vemula PK, Li J, John G. Enzyme catalysis: tool to make and break amygdalin hydrogelators from renewable resources: a delivery model for hydrophobic drugs. J Am Chem Soc, 2006, 128: 8932–8938

    Article  CAS  Google Scholar 

  22. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001, 101: 1869–1880

    Article  CAS  Google Scholar 

  23. Gao P, Zhan CL, Liu MH. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir, 2006, 22: 775–779

    Article  CAS  Google Scholar 

  24. McQuade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev, 2000, 100: 2537–2574

    Article  CAS  Google Scholar 

  25. Du P, Chen GS, Jiang M. Electrochemically sensitive supra-crosslink and its corresponding hydrogel. Sci China Chem, 2012, 55: 836–843

    Article  CAS  Google Scholar 

  26. Ahmed SA, Sallenave X, Fages F, Mieden-Gundert G, Müller WM, Pozzo JL. Multiaddressable self-assembling organogelators based on 2H-chromene and N-acyl-1,ω-amino acid units. Langmuir, 2002, 18: 7096–7101

    Article  CAS  Google Scholar 

  27. Meng YB, Yang YJ. Gelation of the organic liquid electrolytes and the conductivities as gel electrolytes. Electrochem Commun, 2007, 9: 1428–1433

    Article  CAS  Google Scholar 

  28. Daly R, Kotova O, Boese M, Gunnlaugsson T, Boland JJ. Chemical nano-gardens: growth of salt nanowires from supramolecular self-assembly gels. ACS Nano, 2013, 7: 4838–4845

    Article  CAS  Google Scholar 

  29. Kakuta T, Takashima Y, Harada A. Highly elastic supramolecular hydrogels using host-guest inclusion complexes with cyclodextrins. Macromolecules, 2013, 46: 4575–4579

    Article  CAS  Google Scholar 

  30. Roy B, Bairi P, Chakraborty P, Nandi AK. Stimuli-responsive, thixotropic bicomponent hydrogel of melamine-Zn(II)-orotate complex. Supramol Chem, 2013, 25: 335–343

    Article  CAS  Google Scholar 

  31. Wang H, Wang Z, Yi X, Long J, Liu J, Yang Z. Anti-degradation of a recombinant complex protein by incoporation in small molecular hydrogels. Chem Commun, 2011, 47: 955–957

    Article  CAS  Google Scholar 

  32. Liu H, Hu Y, Wang H, Wang J, Kong D, Wang L, Chen L, Yang Z. A thixotropic molecular hydrogel selectively enhances Flk1 expression in differentiated murine embryonic stem cells. Soft Matter, 2011, 7: 5430–5436

    Article  CAS  Google Scholar 

  33. Yan C, Altunbas A, Yucel T, Nagarkar RP, Schneider JP, Pochan DJ. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft Matter, 2010, 6: 5143–5156

    Article  CAS  Google Scholar 

  34. Pek YS, Wan ACA, Shekaran A, Zhuo L, Ying JY. A thixotropic nanocomposite gel for three-dimensional cell culture. Nat Nanotechnol, 2008, 3: 671–675

    Article  CAS  Google Scholar 

  35. Pek YS, Wan ACA, Ying JY. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials, 2010, 31: 385–391

    Article  CAS  Google Scholar 

  36. Fang WW, Sun ZM, Tu T. Novel supramolecular thixotropic metallohydrogels consisting of rare metal-organic nanoparticles: synthesis, characterization, and mechanism of aggregation. J Phys Chem C, 2013, 117: 25185–25194

    Article  CAS  Google Scholar 

  37. Hoshizawa H, Minemura Y, Yoshikawa K, Suzuki M, Hanabusa K. Thixotropic hydrogelators based on a cyclo(dipeptide) derivative. Langmuir, 2013, 29: 14666–14673

    Article  CAS  Google Scholar 

  38. Nanda J, Biswas A, Banerjee A. Single amino acid based thixotropic hydrogel formation and pH-dependent morphological change of gel nanofibers. Soft Matter, 2013, 9: 4198–4208

    Article  CAS  Google Scholar 

  39. Xu ZY, Peng JX, Yan N, Yu H, Zhang SS, Liu KQ, Fang Y. Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter, 2013, 9: 1091–1099

    Article  CAS  Google Scholar 

  40. Sawant PD, Liu XY. Formation and novel thermomechanical processing of biocompatible soft materials. Chem Mater, 2002, 14: 3793–3798

    Article  CAS  Google Scholar 

  41. Weng ZY, Gao YP, Zhang JK, Dong XW, Liu T. Synthesis and biological evaluation of novel n-[3-(4-phenylpip-erazin-1-yl)-propyl]-carboxamide derivatives. J Chem Res, 2011, 35: 43–46

    Article  CAS  Google Scholar 

  42. Yan JL, Liu J, Sun YH, Jing P, He PL, Gao D, and Fang Y. Oligo(FcDC-co-CholDEA) with ferrocene in the main chain and cholesterol as a pendant group: preparation and unusual properties. J Phys Chem B, 2010, 114: 13116–13120

    Article  CAS  Google Scholar 

  43. Tamaki M, Han GX, Hruby VJ. Practical and efficient synthesis of orthogonally protected constrained 4-guanidinoprolines. J Org Chem, 2001, 66: 1038–1042

    Article  CAS  Google Scholar 

  44. Li YG, Liu KQ, Liu J, Peng JX, Feng XL, Fang Y. Amino acid derivatives of cholesterol as “latent” organogelators with hydrogen chloride as a protonation reagent. Langmuir, 2006, 22: 7016–7020

    Article  CAS  Google Scholar 

  45. Yu GC, Yan XZ, Han CY, Huang FH. Characterization of supramolecular gels. Chem Soc Rev, 2013, 42: 6697–6722

    Article  CAS  Google Scholar 

  46. Yang M, Zhang Z, Yuan F, Wang W, Hess S, Lienkamp K, Lieberwirth I, Wegner G. Self-assembled structures in organogels of amphiphilic diblock codendrimers. Chem Eur J, 2008, 14: 3330–3337

    Article  CAS  Google Scholar 

  47. Nebot VJ, Armengol J, Smets J, Prieto SF, Escuder B, Miravet JF. Molecular hydrogels from bolaform amino acid derivatives: a structure-properties study based on the thermodynamics of gel solubilization. Chem Eur J, 2012, 18: 4063–4072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Fang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Liu, K., Chen, X. et al. Preparation of a scorpion-shaped di-NBD derivative of cholesterol and its thixotropic property. Sci. China Chem. 57, 1544–1551 (2014). https://doi.org/10.1007/s11426-014-5135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5135-6

Keywords

Navigation