Skip to main content
Log in

pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we studied the pH dependent plasmon-driven surface-catalysis (PDSC) reactions of p,p′-dimercaptoazobenzene (DMAB) produced from para-aminothiophenol (PATP) and 4-nitrobenzenethiol (4NBT) both theoretically and experimentally. The surface enhanced Raman spectrum (SERS) of DMAB produced from PATP and 4NBT on Ag films in solutions with various pH values has been measured. The simulation and experimental results indicated that the pH dependence of PATP appeared in acidic environment and came from the amino group NH2. Furthermore, the ratio of intensity of Raman peak caused by PATP and DMAB indicated that this acidic sensor had higher pH sensitivity when it was excited by photons of higher energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halas NJ, Lal S, Chang WS, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111(6): 3913–3961

    Article  CAS  Google Scholar 

  2. Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res, 2008, 41(12): 1842–1851

    Article  CAS  Google Scholar 

  3. Xu HX, Bjerneld EJ, Kall M, Borjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced raman scattering. Phys Rev Lett, 1999, 83(21): 4357–4360

    Article  CAS  Google Scholar 

  4. Zhang S, Wei H, Bao K, Hakanson U, Halas NJ, Nordlander P, Xu HX. Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett, 2011, 107(9): 096801

    Article  Google Scholar 

  5. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater, 2010, 9(10): 865–865

    Article  CAS  Google Scholar 

  6. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402–406

    Article  CAS  Google Scholar 

  7. Faang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308(5721): 534–537

    Article  Google Scholar 

  8. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 2007, 315(5819): 1686–1686

    Article  CAS  Google Scholar 

  9. Wei H, Wang Z, Tian X, Kall M, Xu H. Cascaded logic gates in nanophotonic plasmon networks. Nat Commun, 2011, 2: 387–391

    Article  Google Scholar 

  10. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX. Branched silver nanowires as controllable plasmon routers. Nano Lett, 2010, 10(5): 1950–1954

    Article  CAS  Google Scholar 

  11. Ergin T, Stenger N, Brenner P, Pendry JB, Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339

    Article  CAS  Google Scholar 

  12. Ozaki M, Kato J, Kawata S. Surface-plasmon holography with white-light illumination. Science, 2011, 332(6026): 218–220

    Article  CAS  Google Scholar 

  13. Sun MT, Xu HX. A novel application of plasmonics plasmon-driven surface-catalyzed reactions. Small, 2012, doi: 10.1002/smll. 201200572

  14. Li HJ, Fu SL, Xie SX, Xu HQ, Zhou X, Wu JJ. Effects of the local environment on plasmonic coupling of metallic nanotube arrays. Sci China-Phys Mech Astron, 2011, 54(1): 106–110

    Article  CAS  Google Scholar 

  15. Zhang J, Jin YX, Wang HB, Ye C, Tong WM, Wang H. Growth and magnetic properties of single crystalline Ni nanowire arrays prepared by pulse DC electrodeposition. Sci China-Phys Mech Astron, 2011, 54(7): 1244–1248

    Article  CAS  Google Scholar 

  16. Yang LH, Wang YG, Yang BJ. Description of squeezed surface plasmons. Sci China-Phys Mech Astron, 2011, 54(9): 1583–1586

    Article  Google Scholar 

  17. Chen MJ, Zhou HQ, Qiu CY, Yang HC, Yu F, Sun LF. Studies on the properties of surface and edges of N-layer graphenes. Sci China-Phys Mech Astron, 2011, 54(10): 1729–1738

    Article  CAS  Google Scholar 

  18. Li M, Zeng QD, Wang C. Self-assembled supramolecular networks at interfaces: Molecular immobilization and recognition using nanoporous templates. Sci China-Phys Mech Astron, 2011, 54(10): 1739–1748

    Article  CAS  Google Scholar 

  19. Hu XN, Liu JB, Hou S, Wen T, Liu WQ, Zhang K, He WW, Ji YL, Ren HX, Wang Q, Wu XC. Research progress of nanoparticles as enzyme mimetics. Sci China-Phys Mech Astron, 2011, 54(10): 1749–1756

    Article  Google Scholar 

  20. He S, Liu DB, Wang Z, Cai KY, Jiang XY. Utilization of unmodified gold nanoparticles in colorimetric detection. Sci China-Phys Mech Astron, 2011, 54(10): 1757–1765

    Article  Google Scholar 

  21. Li XY, Tang Y, Ge GL. Preparation and ξ-potential characterization of highly dispersible phosphate—functionalized magnetite nanoparticles. Sci China-Phys Mech Astron, 2011, 54(10): 1766–1770

    Article  CAS  Google Scholar 

  22. Li HO, Huang W, Li SM, Tang CW, Lau KM. Metamorphic AlInAs/GaInAs HEMTs on silicon substrates by MOCVD. Sci China-Phys Mech Astron, 2011, 54(10): 1815–1818

    Article  Google Scholar 

  23. Wang X, Li XC, Zhang T, Hu CD, Zhu QX, Chen SH, Li Y, Xu J, He M, Niu QL, Zhao LZ, Li ST, Zhang Y. Novel sol-gel material for fabrication of a long period waveguide grating filter as a precise thermometer. Sci China-Phys Mech Astron, 2011, 54(11): 1967–1971

    Article  CAS  Google Scholar 

  24. Gao X, Zhang Y, Shang JX. First-principles calculation of the structure and the energy of ZrO2/Al2O3 nanomultilayer. Sci China-Phys Mech Astron, 2011, 54(11): 1990–1999

    Article  CAS  Google Scholar 

  25. Li YB, Shionhara R, Iwami K, Ohta Y, Umeda N. Observation of mitochondrial activity based on temporal and spatial pH variations measured by near-field fluorescent ratiometry. Sci China-Phys Mech Astron, 2011, 54(12): 2225–2229

    Article  CAS  Google Scholar 

  26. Sun MT, Zhang ZL, Zheng HR, Xu HX. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci Rep, 2012, doi: SREP-12-01829A

  27. Zhu QX, Hu CD, Wang WJ, He MA, Zhou J, Zhao LZ, Peng ZX, Li ST, Zhu N, Zhang Y. Surface plasmon interference pattern on the surface of a silver-clad planar waveguide as a sub-micron lithography tool. Sci China-Phys Mech Astron, 2011, 54(2): 240–244

    Article  CAS  Google Scholar 

  28. Li HJ, Fu SL, Xie SX, Xu HQ, Zhou X, W JJ. Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film. Sci China-Phys Mech Astron, 2010, 53(1): 38–43

    Article  CAS  Google Scholar 

  29. Xie SX, Li HJ, Xu HQ, Zhou X, Fu SL, Wu JJ. The effect of the Kerr nonlinearity on the transmission through the nanoslit gold film. Sci China-Phys Mech Astron, 2010, 53(3): 474–480

    Article  CAS  Google Scholar 

  30. Li Y, Li YZ, Dong B, Yang ZL. Direct visualization of the charge transfer in conjugated polymers. Sci China-Phys Mech Astron, 2011, 54(6): 1119–1123

    Article  CAS  Google Scholar 

  31. Feng ZQ, Bai L, Cao BS, Gong LD, Dong B. Er3+-Yb3+ codoped borosilicate glass for optical thermometry. Sci China-Phys Mech Astron, 2010, 53(5): 848–851

    Article  CAS  Google Scholar 

  32. Iwakura L, Yabushita A, Kobayashi Ti. Solvent effect for ruthenium porphyrin. Sci China-Phys Mech Astron, 2010, 53(6): 1005–1012

    Article  CAS  Google Scholar 

  33. Chen AQ, Shao QY, Wang L, Deng F. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons. Sci China-Phys Mech Astron, 2011, 54(8): 1438–1442

    Article  CAS  Google Scholar 

  34. Lu S, Yao ZH, Hao PF, Fu CS. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces. Sci China-Phys Mech Astron, 2010, 53(7): 1298–1305

    Article  CAS  Google Scholar 

  35. Hou YX, Geng XM, Li YZ, Dong B, Sun MT. Electrical and Raman properties of p-type and n-type modified graphene by inorganic quantum dot and organic molecule modification. Sci China-Phys Mech Astron, 2011, 54(3): 416–419

    Article  CAS  Google Scholar 

  36. Fang YR, Li YZ, Xu HX, Sun MT. Ascertaining p,p′- dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir, 2010, 26(11): 7737–7746

    Article  CAS  Google Scholar 

  37. Dong B, Fang YR, Xia LX, Xu HX, Sun MT. Is 4-nitrobenzenethiol converted to p,p′-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction? J Raman Spectrosc, 2011, 42(6): 1205–1206

    Article  CAS  Google Scholar 

  38. Huang YF, Zhu HP, Liu GK, Wu DY, Ren B, Tian ZQ. When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on ag during the sers measurement. J Am Chem Soc, 2010, 132(27): 9244–9246

    Article  CAS  Google Scholar 

  39. Tian XR, Chen L, Xu HX, Sun MT. Ascertaining genuine sers spectra of p-aminothiophenol. RSC Advances, 2012, doi: 10.1039/c0xx00000x

  40. Gabudean AM, Biro D, Astilean S. Localized surface plasmon resonance (lspr) and surface-enhanced raman scattering (sers) studies of 4-aminothiophenol adsorption on gold nanorods. J Mol Struct, 2011, 993(1–3): 420–424

    Article  CAS  Google Scholar 

  41. Sun MT, Hou YX, Li ZP, Liu LW, Xu HX. Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Plasmonics, 2011, 6(4): 681–687

    Article  CAS  Google Scholar 

  42. Sun MT, Hou YX, Xu HX. Can information of chemical reaction propagate with plasmonic waveguide and be detected at remote terminal of nanowire? Nanoscale, 2011, 3(10): 4114–4116

    Article  CAS  Google Scholar 

  43. Dong B, Huang YZ, Yu NS, Fang YR, Cao BS, Li YZ, Xu HX, Sun MT. Local and remote charge-transfer-enhanced raman scattering on one-dimensional transition-metal oxides. Chem-Asian J, 2010, 5(8): 1824–1829

    Article  CAS  Google Scholar 

  44. Huang YZ, Fang YR, Sun MT. Remote excitation of surface-enhanced raman scattering on single au nanowire with quasi-spherical termini. J Phys Chem C, 2011, 115(9): 3558–3561

    Article  CAS  Google Scholar 

  45. Song P, Li Y, Li Y, Zhao M, Liu L, Sun MT. Remote-excitation time-dependent surface catalysis reaction using plasmonic waveguide on sites of single-crystalline crossed nanowires. Plasmonics, 2012, doi: 10.1007/s11468-012-9382-0

  46. Dong B, Fang Y, Chen X, Xu H, Sun M. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on au, ag, and cu films. Langmuir, 2011, 27(17): 10677–10682

    Article  CAS  Google Scholar 

  47. Huang YZ, Fang YR, Yang ZL, Sun MT. Can p,p′- Dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle- molecule-ag (or Au) film? J Phys Chem C, 2010, 114(42): 18263–18269

    Article  CAS  Google Scholar 

  48. Sun MT, Huang YZ, Xia LX, Chen XW, Xu HX. The pH-controlled plasmon-assisted surface photocatalysis reaction of 4-aminothiophenol to p,p′-dimercaptoazobenzene on Au, Ag, and Cu colloids. J Phys Chem C, 2011, 115(19): 9629–9636

    Article  CAS  Google Scholar 

  49. Kim K, Kim KL, Shin D, Choi JY, Shin KS. Surface-enhanced raman scattering of 4-aminobenzenethiol on Ag and Au: pH dependence of b(2)-type bands. J Phys Chem C, 2012, 116(7): 4774–4779

    Article  CAS  Google Scholar 

  50. Zong SF, Wang ZY, Yang J, Cui YP. Intracellular ph sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem, 2011, 83(11): 4178–4183

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JrJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Dong, B. pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol. Sci. China Chem. 55, 2567–2572 (2012). https://doi.org/10.1007/s11426-012-4786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4786-4

Keywords

Navigation