Skip to main content
Log in

Design and synthesis of self-healing polymers

  • Feature Articles
  • Special Issue · In Honor of the 80th Birthday of Professor WANG Fosong
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Self-healing polymers represent a class of materials with built-in capability of rehabilitating damages. The topic has attracted increasingly more attention in the past few years. The on-going research activities clearly indicate that self-healing polymeric materials turn out to be a typical multi-disciplinary area concerning polymer chemistry, organic synthesis, polymer physics, theoretical and experimental mechanics, processing, composites manufacturing, interfacial engineering, etc. The present article briefly reviews the achievements of the groups worldwide, and particularly the work carried out in our own laboratory towards strength recovery for structural applications. To ensure sufficient coverage, thermoplastics and thermosetting polymers, extrinsic and intrinsic self-healing, autonomic and non-autonomic healing approaches are included. Innovative routes that correlate materials chemistry to full capacity restoration are discussed for further development from bioinspired toward biomimetic repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang MQ, Rong MZ. Self-healing Polymers and Polymer Composites. Hoboken: John Wiley & Sons, Inc. 2011

    Book  Google Scholar 

  2. Wool RP. Self-healing materials: A review. Soft Matt., 2008, 4: 400–418

    Article  CAS  Google Scholar 

  3. Urban MW. Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog Polym Sci, 2009, 34: 679–687

    Article  CAS  Google Scholar 

  4. Yuan YC, Yin T, Rong MZ, Zhang MQ. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review. Express Polym Lett, 2008, 2: 238–250

    Article  CAS  Google Scholar 

  5. Amendola V, Meneghetti M. Self-healing at the nanoscale. Nanoscale, 2009, 1: 74–88

    Article  CAS  Google Scholar 

  6. Youngblood JP, Sottos NR. Bioinspired materials for self-cleaning and self-healing. MRS Bull, 2008, 33: 732–741

    Article  CAS  Google Scholar 

  7. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR. Self-healing polymers and composites. Ann Rev Mater Res, 2010, 40: 179–211

    Article  CAS  Google Scholar 

  8. Syrett JA, Becer CR, Haddleton, DM. Self-healing and self-mendable polymers. Polym Chem, 2010, 1: 978–987

    Article  CAS  Google Scholar 

  9. Bond IP, Trask RS, Williams HR. Self-healing fiber-reinforced polymer composites. MRS Bull, 2008, 33: 770–774

    Article  CAS  Google Scholar 

  10. Wu DY, Meure S, Solomon, D. Self-healing polymeric materials: A review of recent developments. Prog Polym Sci, 2008, 33: 479–522

    Article  CAS  Google Scholar 

  11. van der Zwaag S, van Dijk NH, Jonkers HM, Mookhoek SD, Sloof WG. Self-healing behaviour in man-made engineering materials: Bioinspired but taking into account their intrinsic character. Philos T Roy Soc A, 2009, 367(1894): 1689–1704

    Article  Google Scholar 

  12. Kessler MR. Self-healing: A new paradigm in materials design. P I Mech Eng G, 2007, 221: 479–495

    Article  CAS  Google Scholar 

  13. White SR, Caruso MM, Moore JS. Autonomic healing of polymers. MRS Bull, 2008, 33: 766–769

    Article  CAS  Google Scholar 

  14. Salonitis K, Pandremenos J, Paralikas J, Chryssolouris G. Multifunctional materials: Engineering applications and processing challenges. Int J Adv Manuf Tech, 2010, 49: 803–826

    Article  Google Scholar 

  15. Mauldin TC, Kessler MR. Self-healing polymers and composites. Int Mater Rev, 2010, 55: 317–346

    Article  CAS  Google Scholar 

  16. Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US. Self-healing materials. Adv Mater, 2010, 22: 5424–5430

    Article  CAS  Google Scholar 

  17. Williams KA, Dreyer DR, Bielawski CW. The underlying chemistry of self-healing materials. MRS Bull, 2008, 33: 759–765

    Article  CAS  Google Scholar 

  18. Caruso MM, Davis DA, Shen Q, Odom SA, Sottos NR, White SR, Moore JS. Mechanically-induced chemical changes in polymeric materials. Chem Rev, 2009, 109: 5755–5798

    Article  CAS  Google Scholar 

  19. Bergman SD, Wudl F. Mendable polymers. J Mater Chem, 2008, 18: 41–62

    Article  CAS  Google Scholar 

  20. Kloxin CJ, Scott TF, Adzima BJ, Bowman CN. Covalent adaptable networks (CANs): A unique paradigm in cross-linked polymers. Macromolecules, 2010, 43: 2643–2653

    Article  CAS  Google Scholar 

  21. Burattini S, Greenland BW, Chappell D, Colquhoun HM, Hayes W. Healable polymeric materials: A tutorial review. Chem Soc Rev, 2010, 39: 1973–1985

    Article  CAS  Google Scholar 

  22. van der Zwaag S. Routes and mechanisms towards self healing behaviour in engineering materials. B Pol Acad Sci-Tech Sci, 2010, 58: 227–236

    Google Scholar 

  23. Murphy EB, Wudl F. The world of smart healable materials. Prog Polym Sci, 2010, 35: 223–251

    Article  CAS  Google Scholar 

  24. Trask RS, Williams HR, Bond IP. Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspir Biomim, 2007, 2: 1–9

    Article  CAS  Google Scholar 

  25. Fischer H. Self-repairing material systems A dream or a reality? Nat Sci, 2010, 2: 873–901

    CAS  Google Scholar 

  26. Samadzadeh M, Boura SH, Peikari M, Kasiriha SM, Ashrafi A. A review on self-healing coatings based on micro/nanocapsules. Prog Org Coat, 2010, 68: 159–164

    Article  CAS  Google Scholar 

  27. Dry C. Passive tunable fibers and matrices. Int J Mod Phys B, 1992, 6: 2763–2771

    Article  CAS  Google Scholar 

  28. Dry C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater Struct, 1994, 3: 118–123

    Article  CAS  Google Scholar 

  29. Dry C, McMillan W. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete. Smart Mater Struct, 1996, 5: 297–300

    Article  CAS  Google Scholar 

  30. Dry C. Procedures developed for self-repair of polymer matrix composite materials. Compos Struct, 1996, 35: 263–269

    Article  Google Scholar 

  31. Motuku M, Janowski CM, Vaidya UK. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater Struct, 1999, 8: 623–638

    Article  CAS  Google Scholar 

  32. Zhao XP, Zhou BL, Luo CR, Wang JH, Liu JW. A model of intelligent material with self-repair function (in Chinese). Chin J Mater Res, 1996, 10: 101–104

    CAS  Google Scholar 

  33. Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT. A smart repair system for polymer matrix composites. Compos Part A-Appl S, 2001, 32: 1767–1776

    Article  Google Scholar 

  34. Dry C, Sottos NR. Passive smart self-repair in polymer matrix composites. Proc SPIE-Int Soc Opt Eng, 1993, 1916: 438–444

    CAS  Google Scholar 

  35. Dry C, McMillan W. Crack and damage assessment in concrete and polymer matrices using liquids released internally from hollow optical fibers. Proc SPIE-Int Soc Opt Eng, 1996, 2718: 448–451

    Google Scholar 

  36. Dry C, Haven P. Smart-fiber-reinforced matrix compositions. US Patent 5803963, 1998

  37. Dry C, Line S, Winona M. Self-repairing reinforced matrix materials. US Patent 7022179 B1,2006

  38. Motuku M, Janowski GM, Vaidya UK, Mahfuz H, Jeelani S. Low velocity impact characterization of unreinforced vinyl ester 411-350 and 411-C50 resin systems. Polym Polym Compos, 1999, 7: 383–407

    CAS  Google Scholar 

  39. Pang WC, Bond IP. A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. Compos Sci Technol, 2005, 65: 1791–1799

    Article  CAS  Google Scholar 

  40. Pang WC, Bond IP. Bleeding composites’ damage detection and self-repair using a biomimetic approach. Compos Part A-Appl S, 2005, 36: 183–

    Google Scholar 

  41. Trask RS, Bond IP. Biomimetic self-healing of advanced composite structures using hollow glass fibres. Smart Mater Struct, 2006, 15: 704–710

    Article  CAS  Google Scholar 

  42. Trask RS, Williams GJ, Bond IP. Bioinspired self-healing of advanced composite structures using hollow glass fibres. J Roy Soc Interface, 2007, 4: 363–371

    Article  CAS  Google Scholar 

  43. Williams G, Trask RS, Bond IP. A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A-Appl S, 2007, 38: 1525–1532

    Article  CAS  Google Scholar 

  44. Williams GJ, Bond IP, Trask RS. Compression after impact assessment of self-healing CFRP. Compos Part A-Appl S, 2009, 40: 1399–1406

    Article  CAS  Google Scholar 

  45. Kousourakis A, Mouritz AP. The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Mater Struct, 2010, 19: 085021

    Article  CAS  Google Scholar 

  46. Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR. Self-healing materials with microvascular networks. Nat Mater, 2007, 6: 581–585

    Article  CAS  Google Scholar 

  47. Therriault D, Shepherd RF, White SR, Lewis JA. Fugitive inks for direct-write assembly of three-dimensional microvascular networks. Adv Mater, 2005, 17: 394–399

    Google Scholar 

  48. Hansen CJ, Wu W, Toohey KS, Sottos NR, White SR, Lewis JA. Self-healing materials with interpenetrating microvascular networks. Adv Mater, 2009, 21: 4143–4147

    Article  CAS  Google Scholar 

  49. Williams HR, Trask RS, Bond IP. Self-healing sandwich panels: Restoration of compressive strength after impact. Compos Sci Technol, 2008, 68: 3171–3177

    Article  CAS  Google Scholar 

  50. Williams HR, Trask RS, Bond IP. Self-healing composite sandwich structures. Smart Mater Struct, 2007, 16: 1198–1207

    Article  Google Scholar 

  51. Huang C-Y, Trask RS, Bond IP. Analytical study of vascular networks for composite laminates. In: Banks WM, Wisnom MR, Eds. Proceedings of the Seventeenth International Conference on Composite Materials. Edinburgh, UK, 2009. D2: 2

  52. Trask RS, Bond IP. Bioinspired engineering study of Plantae vascules for self-healing composite structures. J Roy Soc Interface, 2010, 7: 921–931

    Article  CAS  Google Scholar 

  53. Trask RS, Bond IP. Biomimicry of plantae vascules in the development of self-healing composite structures. In: Banks WM, Wisnom MR, Eds. Proceedings of the Seventeenth International Conference on Composite Materials. Edinburgh, UK, 2009. B5: 1

  54. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409: 794–797

    Article  CAS  Google Scholar 

  55. Brown EN, Sottos NR, White SR. Fracture testing of a self-healing polymer composite. Exp Mech, 2002, 42: 372–379

    Article  CAS  Google Scholar 

  56. Brown EN, White SR, Sottos NR. Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci, 2004, 39: 1703–1710

    Article  CAS  Google Scholar 

  57. Rule JD, Sottos NR, White SR, Moore JS. The chemistry of self-healing polymers. Edu Chem, 2005, 42(5): 130–132

    CAS  Google Scholar 

  58. Rule J, Brown EN, Sottos NR, White SR, Moore JS. Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater, 2005, 72: 205–208

    Article  CAS  Google Scholar 

  59. Jones AS, Rule JD, Moore JS, White SR, Sotto, NR. Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater, 2006, 18: 1312–1317

    Article  CAS  Google Scholar 

  60. Kessler MR, White SR. Self-activated healing of delamination damage in woven composites. Compos Part A-Appl S, 2001, 32, 683–699

    Article  Google Scholar 

  61. Kessler MK, Sottos NR, White SR. Self-healing structural composite material. Compos Part A-Appl S, 2003, 34: 743–753

    Article  CAS  Google Scholar 

  62. Brown EN, White SR, Sottos NR. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite. Part I: Manual infiltration. Compos Sci Technol, 2005, 65: 2466–2473

    Article  CAS  Google Scholar 

  63. Brown EN, White SR, Sottos NR. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite. Part II: In situ self-healing. Compos Sci Technol, 2005, 65: 2474–2480

    Article  CAS  Google Scholar 

  64. Jones AS, Rule JD, Moore JS, Sottos NR, White SR. Life extension of self-healing polymers with rapidly growing fatigue cracks. J Roy Soc Interface, 2007, 4: 395–403

    Article  CAS  Google Scholar 

  65. Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM. Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater, 2008, 18: 44–52

    Article  CAS  Google Scholar 

  66. Rule JD, Sottos NR, White SR. Effect of microcapsule size on the performance of self-healing polymers. Polymer, 2007, 48: 3520–3529

    Article  CAS  Google Scholar 

  67. Patel AJ, Sottos NR, Wetzel ED, White SR. Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos Part A-Appl S, 2010, 41: 360–368

    Article  CAS  Google Scholar 

  68. Moll JL, White SR, Sottos NR. A self-sealing fiber-reinforced com posite. J Compos Mater, 2010, 44: 2573–2585

    Article  CAS  Google Scholar 

  69. Li H, Wang R, Hu H, Liu W. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Appl Surf Sci, 2008, 255: 1894–1900

    Article  CAS  Google Scholar 

  70. Wang R, Li H, Hu H, He X, Liu W. Preparation and characterization of self-healing microcapsules with poly(urea-formaldehyde) grafted epoxy functional group shell. J Appl Polym Sci, 2009, 113: 1501–1506

    Article  CAS  Google Scholar 

  71. Wang R, Li H, Liu W, He X. Surface modification of poly(urea-formaldehyde) microcapsules and the effect on the epoxy composites performance. J Macromol Sci Pure, 2010, 47: 991–995

    Article  CAS  Google Scholar 

  72. Liu X, Lee JK, Yoon SH, Kessler MR. Characterization of diene monomers as healing agents for autonomic damage repair. J Appl Polym Sci, 2006, 101: 1266–1272

    Article  CAS  Google Scholar 

  73. Larin GE. Rheokinetics of ring-opening metathesis polymerization of norbornene-based monomers intended for self-healing applications. Polym Eng Sci, 2006, 46: 1804–1811

    Article  CAS  Google Scholar 

  74. Sheng X, Lee JK, Kessler MR. Influence of cross-link density on the properties of ROMP thermosets. Polymer, 2009, 50: 1264–1269

    Article  CAS  Google Scholar 

  75. Lee JK, Hong SJ, Liu X. Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules. Macromol Res, 2004, 12: 478–483

    Article  CAS  Google Scholar 

  76. Lee JK, Liu X, Yoon SH, Kessler MR. Thermal analysis of ring-opening metathesis polymerized healing agents. J Polym Sci Polym Phys, 2007, 45: 1771–1780

    Article  CAS  Google Scholar 

  77. Liu X, Sheng X, Lee JK, Kessler MR. Synthesis and characterization of melamine-urea-formaldehyde microcapsules containing ENB-based self-healing agents. Macromol Mater Eng, 2009, 294: 389–395

    Article  CAS  Google Scholar 

  78. Guadagno L, Longo P, Raimondo M, Mariconda A, Naddeo C, Sorrentino, Vittoria V, Iannuzzo G, Russo S, Calvi E. A composite material which is self-repairing even at low temperature. WO2009/113025, 2009

  79. Guadagno L, Raimondo M, Iannuzzo G, Russo S. Self-healing structures in aerospace applications. In: Acierno D, D’Amore A, Eds. Proceedings of the Fifth International Conference on Times of Polymers and Composites. Ischia, Italy, 2010. 267–269

  80. Yang H, Fang Z, Fu X, Tong L. A novel glass fiber-supported platinum catalyst for self-healing polymer composites: Structure and reactivity (in Chinese). Chinese J Catal, 2007, 28: 947–952

    Article  CAS  Google Scholar 

  81. Yang H, Fang Z, Fu X, Tong L. Preparation of glass fiber-supported platinum complex catalyst for hydrosilylation reactions. Catal Commun, 2008, 9: 1092–1095

    Article  CAS  Google Scholar 

  82. Wang RG, Hu HL, Liu WB, Guo Q. Preparation and characterization of self-healing polymeric materials with microencapsulated epoxy and imidazoline derivatives curing agent. Polym Polym Compos, 2011, 19: 279–287

    CAS  Google Scholar 

  83. Cho SH, Andersson HM, White SR, Sottos NR, Braun PV. Polydimethylsiloxane-based self-healing materials. Adv Mater, 2006, 18: 997–1000

    Article  CAS  Google Scholar 

  84. Keller MK, White SR, Sottos NR. A self-healing poly(dimethyl siloxane) elastomer. Adv Funct Mater, 2007, 17: 2399–2404

    Article  CAS  Google Scholar 

  85. Caruso MM, Delafuente DA, Ho V, Moore JS, Sottos NR, White SR. Solvent-promoted self-healing materials. Macromolecules, 2007, 40: 8830–8832

    Article  CAS  Google Scholar 

  86. Caruso MM, Blaiszik BJ, White SR, Sottos NR, Moore JS. Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Adv Funct Mater, 2008, 18: 1898–1904

    Article  CAS  Google Scholar 

  87. Blaiszik BJ, Caruso MM, McIlroy DA, Moore JS, White SR, Sottos NR. Microcapsules filled with reactive solutions for self-healing materials. Polymer, 2009, 50: 990–997

    Article  CAS  Google Scholar 

  88. Li G, John M. A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol, 2008, 68: 3337–3343

    Article  CAS  Google Scholar 

  89. Li G, Nettles D. Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer, 2010, 51: 755–762

    Article  CAS  Google Scholar 

  90. Li G, Uppu N. Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization. Compos Sci Technol, 2010, 70: 1419–1427

    Article  CAS  Google Scholar 

  91. John M, Li GQ. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core. Smart Mater Struct, 2010, 19, 075013

    Google Scholar 

  92. Nji J, Li GQ. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater Struct, 2010, 19: 035007

    Article  CAS  Google Scholar 

  93. Wool RP, O’Connor KM. A theory of crack healing in polymers. J Appl Phys, 1981, 52: 5953–5963

    Article  CAS  Google Scholar 

  94. Wool RP, Yuan BL, McGarel OJ. Welding of polymer interfaces. Polym Eng Sci, 1989, 29: 1340–1367

    Article  CAS  Google Scholar 

  95. Kim YH, Wool RP. A theory of healing at a polymer-polymer interface. Macromolecules, 1983, 16: 1115–1120

    Article  CAS  Google Scholar 

  96. Jud K, Kaush HH. Load transfer through chain molecules after interpenetration at interfaces. Polym Bull, 1979, 1: 697–707

    CAS  Google Scholar 

  97. Kaush HH, Jud K. Molecular aspects of crack formation and healing in glassy polymers. Plast Rubber Process Appl, 1982, 2: 265–268

    Google Scholar 

  98. Wool RP. Relation for healing, fracture, self-diffusion and fatigue of random coil polymers. Polym Prepr (ACS Polym Chem Div), 1982, 23: 62–63

    CAS  Google Scholar 

  99. Jud K, Kausch HH, Williams JG. Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci, 1981, 16: 204–210

    Article  CAS  Google Scholar 

  100. McGarel OJ, Wool RP. Craze growth and healing in polystyrene. J Polym Sci Polym Phys, 1987, 25: 2541–2560

    Article  CAS  Google Scholar 

  101. Wool RP, Rockhill AT. Molecular aspects of fracture and crack healing in glassy polymers. Polym Prepr (ACS Polym Chem Div), 1980, 21: 223–224

    CAS  Google Scholar 

  102. Lin CB, Lee S, Liu KS. Methanol-induced crack healing in poly(methyl methacrylate). Polym Eng Sci, 1990, 30: 1399–1406

    Article  CAS  Google Scholar 

  103. Wang PP, Lee S, Harmon J. Ethanol-induced crack healing in poly(methyl methacrylate). J Polym Sci Polym Phys, 1994, 32: 1217–1227

    Article  CAS  Google Scholar 

  104. Corten CC, Urban MW. Repairing polymers using an oscillating magnetic field. Adv Mater, 2009, 21: 5011–5015

    Article  CAS  Google Scholar 

  105. Yamaguchi M, Ono S, Terano M. Self-repairing property of polymer network with dangling chains. Mater Lett, 2007, 61: 1396–1399

    Article  CAS  Google Scholar 

  106. Yamaguchi M, Ono S, Okamoto K. Interdiffusion of dangling chains in weak gel and its application to self-repairing material. Mater Sci Eng B, 2009, 162: 189–194

    Article  CAS  Google Scholar 

  107. Hayes SA, Jones FR, Marshiya K, Zhang W. A self-healing thermosetting composite material. Compos Part A-Appl S, 2007, 38: 1116–1120

    Article  CAS  Google Scholar 

  108. Hayes SA, Zhang W, Branthwaite M, Jones FR. Self-healing of damage in fibre-reinforced polymer-matrix composites. J Roy Soc Interface, 2007, 4: 381–387

    Article  CAS  Google Scholar 

  109. Hayes SA, Jones FR. Self healing composite materials. UK Patent, GB0500242.3, 2004

  110. Fall R. Puncture Reversal of Ethylene Ionomers — Mechanistic Studies. Thesis for the Master Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2001

    Google Scholar 

  111. Kalista S, Ward TC, Oyetunji Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct, 2007, 14: 391–397

    Article  CAS  Google Scholar 

  112. Kalista S, Ward TC, Kalista SJ, Ward TC. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J Roy Soc Interface, 2007, 4: 405–411

    Article  CAS  Google Scholar 

  113. Kalista S. Self-healing of Thermoplastic Poly(ethylene-co-methacrylic acid) Copolymers Following Projectile Puncture. Thesis for the Master Degree. Blacksburg: Virginia Polytechnic Institute and State University, 2003

    Google Scholar 

  114. Kalister SJ. Self-Healing ionomers. In: Ghosh SK. Ed. Self-healing Materials: Fundamentals, Design Strategies, and Applications. Weinheim: Wiley-VCH, 2009. 73–100

    Google Scholar 

  115. Varley RJ, van der Zwaag S. Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater, 2008, 56: 5737–5750

    Article  CAS  Google Scholar 

  116. Varley RJ, Shen S, van der Zwaag S. The effect of cluster plasticisa tion on the self healing behaviour of ionomers. Polymer, 2010, 51: 679–686

    Article  CAS  Google Scholar 

  117. Takeda K, Unno H, Zhang M. Polymer reaction in polycarbonate with Na2CO3. J Appl Polym Sci, 2004, 93: 920–926

    Article  CAS  Google Scholar 

  118. Takeda K, Tanahashi M, Unno H. Self-healing mechanism of plastics. Sci Technol Adv Mater, 2003, 4: 435–444

    Article  CAS  Google Scholar 

  119. Ikeda Y, Imaizumi K, Ohxawa T, Unno H, Takeda K. Study on polycarbonate as an actively protective material and reaction mechanism of the molecular weight repairing. J Soc Mater Sci Jpn, 2002, 51: 1316–1322

    Article  CAS  Google Scholar 

  120. Imaizumi K, Ohba T, Ikeda Y, Takeda K. Self-repairing mechanism of polymer composite. Mater Sci Res Int, 2001, 7: 249–253

    CAS  Google Scholar 

  121. Ghosh B, Urban MW. Self-repairing oxetane-substituted chitosan polyurethane networks. Science, 2009, 323(5920): 1458–460

    Article  CAS  Google Scholar 

  122. Craven JM. Cross-linked Thermally reversible polymers produced from condensation polymers with pendant furan groups cross-linked with maleimides. US Patent 3435003, 1969

  123. Chujo Y, Sada K, Saegusa T. Reversible gelation of polyoxazoline by means of Diels-Alder reaction. Macromolecules, 1990, 23: 2636–2641

    Article  CAS  Google Scholar 

  124. Chen XX, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295: 1698–1702

    Article  CAS  Google Scholar 

  125. Chen XX, Wudl F, Mal AK, Shen HB, Nutt, SR. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 2003, 36: 1802–1807

    Article  CAS  Google Scholar 

  126. Liu Y-L, Hsieh C-Y. Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J Polym Sci Polym Chem, 2006, 44: 905–913

    Article  CAS  Google Scholar 

  127. Liu Y-L, Chen Y-W. Thermally reversible crosslinked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol Chem Phys, 2007, 208: 224–232

    Article  CAS  Google Scholar 

  128. Peterson AM, Jensen RE, Palmese GR. Reversibly cross-linked polymer gels as healing agents for epoxy-amine thermosets. ACS Appl Mater Interfaces, 2009, 1, 992–995

    Article  CAS  Google Scholar 

  129. Peterson AM, Jensen RE, Palmese GR. Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction. ACS Appl Mater Interfaces, 2010, 2, 1141–1149

    Article  CAS  Google Scholar 

  130. Zhang Y, Broekhuis, AA, Picchioni F. Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules, 2009, 42: 1906–1912

    Article  CAS  Google Scholar 

  131. Murphy EB, Bolanos E, Shaffner-Hamann C, Wudl F, Nutt SR, Auad ML. Synthesis and characterization of a single-component thermally remendable polymer network: Staudinger and Stille revisited. Macromolecules, 2008, 41: 5203–5209

    Article  CAS  Google Scholar 

  132. Watanabe M, Yoshie N. Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers. Polymer, 2006, 47: 4946–4952

    Article  CAS  Google Scholar 

  133. Yoshie N, Watanabe M, Araki H, Ishida K. Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide. Polym Degrad Stab, 2010, 95: 826–829

    Article  CAS  Google Scholar 

  134. Boul PJ, Reutenauer P, Lehn J-M. Reversible Diels-Alder reactions for the generation of dynamic combinatorial libraries. Org Lett, 2005, 7: 15–18

    Article  CAS  Google Scholar 

  135. Reutenauer P, Buhler E, Boul PJ, Candau SJ, Lehn J-M. Room temperature dynamic polymers based on Diels-Alder chemistry. Chem-Eur J, 2009, 15: 1893–1900

    Article  CAS  Google Scholar 

  136. Deng G, Tang C, Li F, Jiang H, Chen Y. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules, 2010, 43: 1191–1194

    Article  CAS  Google Scholar 

  137. Chung C-M, Roh Y-S, Cho S-Y, Kim J-G. Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater, 2004, 16: 3982–3984

    Article  CAS  Google Scholar 

  138. Ramamurthy V, Venkatesan K. Photochemical reactions of organic crystals. Chem Rev, 1987, 87: 433–481

    Article  CAS  Google Scholar 

  139. Hasegawa M, Katsumata T, Ito Y, Saigo K, Iitaka Y. Topochemical photoreactions of unsymmetrically substituted diolefins. 2. Photopolymerization of 4-(alkoxycarbonyl)-2,5-distyrylpyrazines. Macromolecules, 1988, 21: 3134–3138

    Article  CAS  Google Scholar 

  140. Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew Chem Int Ed, 2011, 50: 1660–1663

    Article  CAS  Google Scholar 

  141. Froimowicz P, Frey H, Landfester K. Towards the generation of self-healing materials by means of a reversible photo-induced approach. Macromol Rapid Commun 2011, 32: 468–473

    Article  CAS  Google Scholar 

  142. Wietor JL, Sijbesma RP. A self-healing elastomer. Angew Chem Int Ed, 2008, 47: 8161–8163

    Article  CAS  Google Scholar 

  143. Chino K, Ashiura M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules, 2001, 34: 9201–9204

    Article  CAS  Google Scholar 

  144. Mynar JL, Aida T. The gift of healing. Nature, 2008, 451: 895–896

    Article  CAS  Google Scholar 

  145. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451: 977–980

    Article  CAS  Google Scholar 

  146. Harreld JH, Wong MS, Hansma PK, Morse DE, Stucky GD. Self-healing organosiloxane materials containing reversible and energy-dispersive crosslinking domains. US Patent 6783709. 2004

  147. Beijer FH, Sijbesma RP, Kooijman H, Spek AL, Meijer EW. Strong dimerization of ureidopyrimidones via quadruple hydrogen bonding. J Am Chem Soc, 1998, 120, 6761–6769

    Article  CAS  Google Scholar 

  148. Beijer FH, Kooijman H, Spek AL, Sijbesma RP, Meijer EW. Self-complementarity achieved through quadruple hydrogen bonding. Angew Chem Int Ed, 1998: 37, 75–78

    Article  CAS  Google Scholar 

  149. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Ky Hirschberg, JHK, Lange RFM, Lowe JKL, Meijer EW. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science, 1997, 278: 1601–1604

    Article  CAS  Google Scholar 

  150. Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C, Optically healable supramolecular polymers. Nature, 2011, 472: 334–338

    Article  CAS  Google Scholar 

  151. Burattini S, Colquhoun HM, Greenland BW, Hayes W. A novel self-healing supramolecular polymer system. Faraday Discuss, 2009, 143: 251–264

    Article  CAS  Google Scholar 

  152. Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, Mackay ME, Rowan SJ. A self-repairing, supramolecular polymer system: Healability as a consequence of donor-acceptor-stacking interactions. Chem Commun, 2009, (44): 6717–6719

    Article  CAS  Google Scholar 

  153. Jiang C, Markutsya S, Pikus Y, Tsukruk VV. Freely suspended nanocomposite membranes as highly sensitive sensors. Nat Mater, 2004, 3: 721–728

    Article  CAS  Google Scholar 

  154. South AB, Lyon LA. Autonomic self-healing of hydrogel thin films. Angew Chem Int Ed, 2010, 122: 779–783

    Article  Google Scholar 

  155. Yin T, Rong MZ, Zhang MQ, Yang GC. Self-healing epoxy composites — Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol, 2007, 67: 201–212

    Article  CAS  Google Scholar 

  156. Yuan L, Liang GZ, Xie JQ, Li L, Guo J. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer, 2006, 47, 5338–5349

    Article  CAS  Google Scholar 

  157. Satoshi M, Ikuzo U, Makoto K, Kunihiko N. Adhesive containing microcapsules. European Patent 0543675, 1993

  158. Ronald LH, Dale EW. Microencapsulated epoxy adhesive system. US Patent 4536524, 1985

  159. Schuetze CE, Antonio S. Encapsulation technique. US Patent 3396117, 1968

  160. Goldsmith, C. Process for establishing reactive contact between reactive ingredients. US Patent 3791980, 1974

  161. Petrie EM. Epoxy Adhesive Formulations. London: McGraw-Hill Co., 2006

    Google Scholar 

  162. Xing QY, Xu RQ, Zhou Z. The Foundations of Organic Chemistry (in Chinese). Beijing: Higher Education Press, 1994

    Google Scholar 

  163. Jencks WP, Gilbert HF. General acid-base catalysis of carbonyl and acyl group reactions. Pure Appl Chem, 1977, 49: 1021–1027

    Article  CAS  Google Scholar 

  164. Lowe GB. The cure chemistry of polysulfides. Int J Adhes Adhes, 1997, 17: 345–348

    Article  CAS  Google Scholar 

  165. Yuan YC, Rong MZ, Zhang MQ. Preparation and characterization of microencapsulated polythiol. Polymer, 2008, 49: 2531–2541

    Article  CAS  Google Scholar 

  166. Fuchigami M. Micro-capsules and method for their production. US Patent 4233178, 1980

  167. Yuan L, Liang GZ, Xie JQ, He SB. Synthesis and characterization of microencapsulated dicyclopentadiene with melamine-formaldehyde resins. Colloid Polym Sci, 2007, 285: 781–791

    Article  CAS  Google Scholar 

  168. Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials. Int J Pharm, 2002, 242: 307–311

    Article  CAS  Google Scholar 

  169. Su JF, Li R, Wang LX. Preparation and mechanical properties of thermal energy storage microcapsules. Colloid Polym Sci, 2005, 284: 224–228

    Article  CAS  Google Scholar 

  170. Hong K, Park S. Melamine resin microcapsules containing fragrant oil: Synthesis and characterization. Mater Chem Phys, 1999, 58: 128–131

    Article  CAS  Google Scholar 

  171. Lee HY, Lee SJ, Cheong IW, Kim JH. Microencapsulation of fragrant oil via in situ polymerization: Effects of pH and melamine-formaldehyde molar ratio. J Microencapsul, 2002, 19: 559–569

    Article  CAS  Google Scholar 

  172. Yuan YC, Rong MZ, Zhang MQ. Preparation and characterization of poly(melamine-formaldehyde) walled microcapsules containing epoxy (in Chinese). Acta Polym Sin, 2008, 5: 472–480

    Article  Google Scholar 

  173. Brown EN, Sottos NR, White SR. Fracture testing of a self-healing polymer composite. Exp Mech, 2002, 42: 4372–4379

    Google Scholar 

  174. Yuan YC, Rong MZ, Zhang MQ, Chen J, Yang GC, Li XM. Self-healing polymeric materials using epoxy/mercaptan as the healant. Macromolecules, 2008, 41: 5197–5202

    Article  CAS  Google Scholar 

  175. Yuan YC, Rong MZ, Zhang MQ, Yang GC. (2009) Study of factors related to performance improvement of self-healing epoxy based on dual encapsulated healant. Polymer, 50: 5771–5781

    Article  CAS  Google Scholar 

  176. Sharp PK, Clayton JQ, Clark G. Retardation and repair of fatigue cracks by adhesive infiltration. Fatigue Fract Eng M, 1997, 20: 605–614

    Article  CAS  Google Scholar 

  177. Yuan YC, Rong MZ, Zhang MQ, Yang GC, Zhao JQ. Self-healing of fatigue crack in epoxy materials with epoxy/mercaptan system. Express Polym Lett, 2011, 5: 47–59

    Article  CAS  Google Scholar 

  178. Yuan YC, Rong MZ, Zhang MQ, Yang GC, Zhao JQ. Healing of fatigue crack in epoxy materials with epoxy/mercaptan system via manual infiltration. Express Polym Lett, 2010, 4: 644–658

    Article  CAS  Google Scholar 

  179. Elber W. Fatigue crack closure under cyclic tension. Eng Fract Mech, 1970, 2: 37–45

    Article  Google Scholar 

  180. Lee J, Bhattacharyya D, Zhang MQ, Yuan YC. Fracture behaviour of a self-healing microcapsule-loaded epoxy system. Express Polym. Lett, 2011, 5: 246–253

    Article  CAS  Google Scholar 

  181. Yuan YC, Ye YP, Rong MZ, Chen H, Wu J, Zhang MQ, Qin SX, Yang GC. Self-healing of low-velocity impact damage in glass fabric/epoxy composites using epoxy-mercaptan healing agent. Smart Mater Struct, 2010, 20: 015024

    Article  CAS  Google Scholar 

  182. Wagner HB. Controlled boron trifluoride catalysis of epoxy polymerizations. J Polym Sci, 1957, 26: 329–332

    Article  CAS  Google Scholar 

  183. Xiao DS, Yuan YC, Rong MZ, Zhang MQ. A facile strategy for preparing self-healing polymer composites by incorporation of cationic catalyst-loaded vegetable fibers. Adv Funct Mater, 2009, 19: 2289–2296

    Article  CAS  Google Scholar 

  184. Xiao DS, Yuan YC, Rong MZ, Zhang MQ. Hollow polymeric microcapsules: Preparation, characterization and application in holding boron trifluoride diethyl etherate. Polymer, 2009, 50: 560–568

    Article  CAS  Google Scholar 

  185. Xiao DS, Rong MZ, Zhang MQ. A novel method for preparing epoxy-containing microcapsules via UV irradiation-induced interfacial copolymerization in emulsions. Polymer, 2007, 48: 4765–4776

    Article  CAS  Google Scholar 

  186. Xiao DS, Yuan, Y.C., Rong MZ, Zhang MQ. Self-healing epoxy based on cationic chain polymerization. Polymer, 2009, 50: 2967–2975

    Article  CAS  Google Scholar 

  187. Landon G, Lewis G, Boden GF. The influence of particle size on the tensile strength of particulate-filled polymers. J Mater Sci, 1977, 12: 1605–1613

    Article  CAS  Google Scholar 

  188. Okuno K, Woodhams RT. Mechanical properties and characterization of phenolic resin syntactic foams. J Cell Plast, 1974, 10: 237–244

    Article  CAS  Google Scholar 

  189. Dowbenko R, Anderson CC, Chang WH. Imidazole complexes as hardeners for epoxy adhesives. Ind Eng Chem Prod Res Dev, 1971, 10: 344–351

    Article  CAS  Google Scholar 

  190. Ibonai M, Kuramochi T. Curing of epoxy resin by use of imidazole/metal complexs (in Japanese). Purasuchikkusu, 1975, 26(7): 69–73

    CAS  Google Scholar 

  191. Bi CH, Gan CL, Zhao SQ. Study on synthesis, curing reaction and properties of imidazole salt (in Chinese). Thermoset Resin, 1997, 12(1), 12–15

    CAS  Google Scholar 

  192. Rong MZ, Zhang MQ, Zhang W. A novel self-healing epoxy system with microencapsulated epoxy and imidazole curing agent. Adv Compos Lett, 2007, 16: 167–172

    Google Scholar 

  193. Yin T, Rong MZ, Zhang MQ, Yang GC. Self-healing epoxy composites — Preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Compos Sci Technol, 2007, 67: 201–212

    Article  CAS  Google Scholar 

  194. Yin T, Zhou L, Rong MZ, Zhang MQ. Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Mater Struct, 2008, 17: 015019

    Article  CAS  Google Scholar 

  195. Yin T, Rong MZ, Zhang MQ, Zhao JQ. Durability of self-healing woven glass fabric/epoxy composites. Smart Mater Struct, 2009, 18: 074001

    Article  CAS  Google Scholar 

  196. Yin T, Rong MZ, Wu JS, Chen HB, Zhang MQ. Healing of impact damage in woven glass fabric reinforced epoxy composites. Compos Part A-Appl S, 2009, 39: 1479–1487

    Article  CAS  Google Scholar 

  197. Saez SS, Barbero E, Zaera R, Navarro C. Compression after impact of thin composite laminates. Compos Sci Technol, 2005, 65: 1911–1919

    Article  CAS  Google Scholar 

  198. Hiral Y, Hamada H, Kim JK. Impact response of woven glass-fabric composites. I. Effect of fibre surface treatment. Compos Sci Technol, 1998, 58: 91–104

    Article  Google Scholar 

  199. Chou TW. Structure and Properties of Composites. Weinheim: VCH, 1993.

    Google Scholar 

  200. Carlsson LA, Pipes RB. Experimental Characterization of Advanced Composite Materials. Lancaster: Technomic Publishing, 1997

    Google Scholar 

  201. Szwarc M. ’Living’ polymers. Nature, 1956, 178: 1168–1169

    Article  CAS  Google Scholar 

  202. Wang HP, Yuan YC, Rong MZ, Zhang MQ. Self-healing of thermoplastics via living polymerization. Macromolecules, 2010, 43: 595–598

    Article  CAS  Google Scholar 

  203. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev, 2001, 101: 2921–2990

    Article  CAS  Google Scholar 

  204. Wang JS, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc, 1995, 117: 5614–5615

    Article  CAS  Google Scholar 

  205. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28: 1721–1723

    Article  CAS  Google Scholar 

  206. Matyjaszewski K. Macromolecular engineering by controlled/living ionic and radical polymerizations. Macromol Symp, 2001, 174: 51–68

    Article  CAS  Google Scholar 

  207. Chatterjee DP, Chatterjee U, Mandal BM. Atom transfer radical polymerization of methyl methacrylate at ambient temperature using soluble Cu(I) complex catalysts formed with mixed ligands of multidentate amines and halide ions. J Polym Sci Polym Chem, 2004, 42: 4132–4142

    Article  CAS  Google Scholar 

  208. Munirasu S, Dhamodharan R. Very rapid copper-mediated atom transfer radical polymerization of benzyl methacrylate at ambient temperature. J Polym Sci Polym Chem, 2004, 42: 1053–1057

    Article  CAS  Google Scholar 

  209. Krishnan R, Srinivasan KSV. Controlled/“living” radical polymerization of glycidyl methacrylate at ambient temperature. Macromolecules 2003, 36: 1769–1771

    Article  CAS  Google Scholar 

  210. Cañamero PF, de la Fuente JL, Madruga EL, Fernández-García M. Atom transfer radical polymerization of glycidyl methacrylate: A functional monomer. Macromol Chem Phys, 2004, 205: 2221–2228

    Article  CAS  Google Scholar 

  211. Meng LM, Yuan YC, Rong MZ, Zhang MQ. A dual mechanism single-component self-healing strategy for polymers. J Mater Chem, 2010, 20: 6030–6038

    Article  CAS  Google Scholar 

  212. Grimes SM, Lateef H, Jafari AJ, Mehta L. Studies of the effects of copper, copper(II) oxide and copper(II) chloride on the thermal degradation of poly(vinyl chloride). Polym Degrad Stab, 2006, 91: 3274–3280

    Article  CAS  Google Scholar 

  213. Moineau G, Dubois Ph, Jérôme R, Senninger T, Teyssié Ph. Alternative Atom transfer radical polymerization for MMA using FeCl3 and AIBN in the presence of triphenylphosphine: An easy way to well-controlled PMMA. Macromolecules, 1998, 31: 545–547

    Article  CAS  Google Scholar 

  214. Moad G, Rizzardo E, Thang SH. Toward living radical polymerization. Acc Chem Res, 2008, 41: 1133–1142

    Article  CAS  Google Scholar 

  215. Yao L, Yuan YC, Rong MZ, Zhang MQ. Self-healing linear polymers based on RAFT polymerization. Polymer, 2011, 52: 3137–3145

    Article  CAS  Google Scholar 

  216. Yao L, Rong MZ, Zhang MQ, Yuan YC. Self-healing of thermoplastics via reversible addition-fragmentation chain transfer polymerization. J Mater Chem, 2011, 21: 9060–9065

    Article  CAS  Google Scholar 

  217. Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Skidmore MA, Thang SH. Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules, 2003, 36: 2273–2283

    Article  CAS  Google Scholar 

  218. Barner-Kowollik C, Quinn JF, Nguyen TLU, Heuts JPA, Davis TP, Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate. Macromolecules, 2001, 34: 7849–7857

    Article  CAS  Google Scholar 

  219. Zhang Z, Zhu X, Zhu J, Cheng Z, Zhu S. Thermal-initiated reversible addition-fragmentation chain transfer polymerization of methyl methacrylate in the presence of oxygen. J Polym Sci Polym Chem, 2006, 44: 3343–3354

    Article  CAS  Google Scholar 

  220. Barner L, Quinn JF, Barner-Kowollik C, Vana P, Davis TP. Reversible addition-fragmentation chain transfer polymerization initiated with gamma-radiation at ambient temperature: an overview. Eur Polym J, 2003, 39: 449–459

    Article  CAS  Google Scholar 

  221. Lu L, Zhang H, Yang N, Cai Y. Toward rapid and well-controlled ambient temperature RAFT polymerization under UV-Vis radiation: effect of radiation wave range. Macromolecules, 2006, 39: 3770–3776

    Article  CAS  Google Scholar 

  222. Chipara M, Wooley K. Molecular self-healing processes in polymers. Mater Res Soc Symp Proc, 2005, 851: 127–132

    CAS  Google Scholar 

  223. Tian Q, Yuan YC, Rong MZ, Zhang MQ. A thermally remendable epoxy resin. J Mater Chem, 2009, 19: 1289–1296

    Article  CAS  Google Scholar 

  224. Chen XX. Novel polymers with thermally controlled covalent cross-linking. Dissertation for the Doctoral Degree. Los Angeles: University of California, 2003

    Google Scholar 

  225. Plaisted TA, Nemat-Nasser S. Quantitative evaluation of fracture, healing and re-healing of a reversibly cross-linked polymer. Acta Mater, 2007, 55: 5684–5696

    Article  CAS  Google Scholar 

  226. Tian Q, Rong MZ, Zhang MQ, Yuan YC. Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction. Polym Int, 2010, 59: 1339–1345

    Article  CAS  Google Scholar 

  227. Utracki LA. Polymer Alloys and Blends. Munich: Hanser Gardner Publications, 1990

    Google Scholar 

  228. Isayev AI. Encyclopedia of Polymer Blends: Volume 1: Fundamentals. New York: Wiley-VCH, 2010

    Google Scholar 

  229. Tian Q, Rong MZ, Zhang MQ, Yuan YC. Optimization of thermal remendability of epoxy via blending. Polymer, 2010, 51: 1779–1785

    Article  CAS  Google Scholar 

  230. Tao ZQ, Yang SY, Ge ZY, Chen JS, Fan L. Synthesis and properties of novel fluorinated epoxy resins based on 1,1-bis(4-glycidylester-phenyl)-1-(3′-trifluoromethylphenyl)-2,2,2-trifluoroethane. Eur Polym J, 2007, 43: 550–560

    Article  CAS  Google Scholar 

  231. Ling J, Rong MZ, Zhang MQ. Coumarin imparts repeated photochemical remendability to polyurethane. J Mater Chem, 2011, 21: 18373–18380

    Article  CAS  Google Scholar 

  232. Chen Y, Wu JD. Preparation and photoreaction of copolymers derived from N-(1-phenylethyl)acrylamide and 7-acryloyloxy-4-methyl coumarin. J Polym Sci Polym Chem, 1994, 32: 1867–1875

    Article  CAS  Google Scholar 

  233. Trenor SR, Shultz AR, Love BJ, Long TE. Coumarins in polymers: From light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev, 2004, 104: 3059–3078

    Article  CAS  Google Scholar 

  234. Ren BY, Zhao DL, Liu SS, Liu XX, Tong Z. Synthesis and characterization of poly(ferrocenylsilanes) with coumarin side groups and their photochemical reactivity and electrochemical behavior. Macromolecules, 2007, 40: 4501–4508

    Article  CAS  Google Scholar 

  235. Jiang JQ, Qi B, Lepage M, Zhao Y. Polymer micelles stabilization on demand through reversible photo-cross-linking. Macromolecules, 2007, 40: 790–792

    Article  CAS  Google Scholar 

  236. Gangadhara, Kishore K. A new class of photo-cross-linkable side chain liquid crystalline polymers containing bis(benzylidene) cyclo-hexanone units. Macromolecules, 1995, 28: 806–815

    Article  CAS  Google Scholar 

  237. Jackson PO, O’Neill M, Duffy WL, Hindmarsh P, Kelly SM, Owen GJ. An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals. Chem Mater, 2001, 13: 694–703

    Article  CAS  Google Scholar 

  238. Yuan YC, Ye XJ, Rong MZ, Zhang MQ, Yang GC, Zhao JQ. Self-healing epoxy composite with heat resistant healant. ACS Appl Mater Interf, 2011, 3: 4487–4495

    Article  CAS  Google Scholar 

  239. Zhang MQ, Rong MZ, Theoretical consideration and modeling of self-healing polymers. J Polym Sci Polym Phys, 2012, 50: 229–241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingQiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Rong, M. Design and synthesis of self-healing polymers. Sci. China Chem. 55, 648–676 (2012). https://doi.org/10.1007/s11426-012-4511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-012-4511-3

Keywords

Navigation