Skip to main content
Log in

Studies on the biomimetic membrane interaction between liposome and realgar nanoparticles

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The liposome of small unilamellar vesicles (SUV) made from phosphatidylcholine-cholesterol mixtures was used as a simple model for biomimetic membranes. The studies on the interaction between the liposome and realgar nanoparticles (NPs) demonstrate that the phospholipid is one of the key targeted molecules of realgar NPs, used by surface plasmon resonance (SPR) technology, fluorescence polarization, Raman spectroscopy, nuclear magnetic resonance (NMR) and atom force microscope (AFM). It was observed that the relative viscosity (η r) of the membrane increased and the membrane fluidity decreased as realgar NPs bound to SUV. Calculations of Raman intensity ratios detected the increase of longitudinal order parameters (S trans) and lateral order parameters (S lat) of the lipid bilayer, indicating a rise in the proportion of trans conformations of alkyl chains, and the decrease of membrane’s fluidity attributed to the interaction of realgar NPs. Results of Raman spectra and 31P NMR suggest that the polar headgroup of phospholipid is the interacted target site of realgar NPs. Moreover, time-lapse AFM images show that realgar NPs compromise the phospholipid membrane integrity to result in the formation of “pore” or “hole”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandal B K, Suzuki K T. Arsenic round the world: a review. Talanta, 2002, 58: 201–235

    Article  CAS  Google Scholar 

  2. David J T, Miroslav S, Shan L. The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol, 2001, 176: 127–144

    Article  Google Scholar 

  3. Nordstrom D K. World wide occurrences of aresnic in ground water. Science, 2002, 296: 2143–2145

    Article  CAS  Google Scholar 

  4. Chen G Q, Zhu J, Shi X G, Ni J H, Zhong H J, Si G Y, Jin X L, Tang W, Li X S, Xong S M, Shen Z X, Sun G L, Ma J, Zhang P, Zhang T D, Gazin C, Naoe T, Chen S J, Wang Z Y, Chen Z. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with down-regulation of bcl-2 expression and alteration of PML-RARa/PML protein localization. Blood, 1996, 88: 1052–1061

    CAS  Google Scholar 

  5. Lu D P, Qiu J Y, Jiang B, Wang Q, Liu K Y, Liu Y R, Chen S S, Tetra-arsenic tetra-sulfide for the treatment of acute promyelocytic leukemia: A pilot report. Blood, 2002, 99: 3136–3143

    Article  CAS  Google Scholar 

  6. Deng Y, Xu H B, Huang K, Yang X, Xie C, Wu J. Size effects of realgar particles on apoptosis in a human umbilical vein endothelial cell line: ECV-304. Pharmacol Res, 2001, 44: 513–518

    Article  CAS  Google Scholar 

  7. Luo L Y, huang J, Guo B D, Zhang T L, Wang K. Induction of human promyelcocytic leukemia HL-60 cell differentiation into monocytes by arsenic sulphide: Involvement of serine/threonine protein phosphatases. Leuk Res, 2006, 30: 1399–1405

    Article  CAS  Google Scholar 

  8. Wang X B, Gao H Y, Hou B L, Huang J, Xi R G, Wu L J. Nanoparticle realgar powders induce apoptosis in U937 cells through caspase MAPK and mitochondrial pathways. Arch Pharm Res, 2007, 30: 653–658

    Article  CAS  Google Scholar 

  9. Ye H Q, Gan L, Yang X L, Xu H B. Membrane-associated cytotoxicity induced by realgar in promyelocytic leukemia HL-60 cells, J Ethnopharmacol, 2006, 103: 366–371

    Article  CAS  Google Scholar 

  10. Shen X C, Liang H, Chen Y, Guo Y F, Wei J. China Patent: ZL200510020488.5 (in Chinese)

  11. Wei J, Shen X C, Liang H, Liang Y N. Spectroscopic studies on interaction of bovine hemoglobin and realgar nanoparticles. Spectroscopy and Spectral Analysis, 2008, 28(4): 852–855 (in Chinese)

    CAS  Google Scholar 

  12. Lau T L, Gehman J D, Wade J D, Colin L M, Kevin J B, Frances S. Cholesterol and clioquinol modulation of Aβ(1–42) interaction with phospholipids bilayers and metals. Biochim Biophys Acta, 2007, 1768(12): 3135–3144

    Article  CAS  Google Scholar 

  13. Herbig M E, Assi F, Textor M, Merkle H P, The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. Biochemisty, 2006, 45: 3598–3609

    Article  CAS  Google Scholar 

  14. Borch J, Torta F, Sligar S G, Roepstorff P. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor. Anal Chem, 2008, 80(16): 6245–6252

    Article  CAS  Google Scholar 

  15. Shinitzky M, Barenholz Y. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta, 1978, 515: 367–394

    CAS  Google Scholar 

  16. Gaber B P, Peticolas W L. On the quantitative interpretation of biomembrane structure by Raman spectroscopy. Biochem Biophys Acta, 1977, 465: 260–274

    Article  CAS  Google Scholar 

  17. Cherney D P, Conboy J C, Harris J M. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. Anal Chem, 2003, 75: 6621–6628

    Article  CAS  Google Scholar 

  18. Tantipolphan R, Rades T, Strachan C J, Gordon K C, Medlicott N J. Analysis of lecithin-cholesterol mixtures using Raman spectroscopy. J Pharm Biomed Anal, 2006, 41: 476–484

    Article  CAS  Google Scholar 

  19. Gardikis K, Hatziantonious S, Viras K, Wagner M, Demetzos C. A DSC and Raman spectroscopy on DPPC model lipid membranes. Int J Pharm, 2006, 318: 118–123

    Article  CAS  Google Scholar 

  20. Capelle F, Lhert F, Blaudez D, Kellay H, Turlet J M. Thickness and organization of black films using confocal micro-Raman spectroscopy. Colloid Surf A, 2000, 171: 199–205

    Article  CAS  Google Scholar 

  21. Bush S F, Adams R G, Levin I W. Structural reorganizations in lipid bilayer systems: effect of hydration and sterol addition on Raman spectra of dipalmitoyl phosphatidylcholinemultilayers. Biochemistry, 1980, 19: 4429–4436

    Article  CAS  Google Scholar 

  22. Aposhian H V, Aposhian M M. Arsenic toxicology: five Questions. Chem Res Toxicol, 2006, 19(1): 1–15

    Article  CAS  Google Scholar 

  23. Suwalsky M, Rivera C, Villena F, Sotomayor C P, Jemiola-Rzeminska M, Strzalka K. Arsenite interactions with phospholipids bilayers as molecular models for the human erythrocyte membrane. Biophys Chem, 2007, 127: 28–35

    Article  CAS  Google Scholar 

  24. Vasir J K, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles, Biomaterials, 2008, 29: 4244–4252

    Article  CAS  Google Scholar 

  25. Ginzburg V V, Balijepalli S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes, Nano Lett. 2007, 7(12): 3716–3722

    Article  CAS  Google Scholar 

  26. Leroueil P R, Berry S A, Duthie K, Han G, Rotello V M, McNerny D Q, Baker Jr J R, Orr B G, Holl M M B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett, 2008, 8(2): 420–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XingCan Shen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20701010 & 20261001), National Natural Science Foundation of Guangxi (Grant No. 0728094) and the Project of Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education (Grant No. 07109001-10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Jin, T., Xie, J. et al. Studies on the biomimetic membrane interaction between liposome and realgar nanoparticles. Sci. China Ser. B-Chem. 52, 1512–1518 (2009). https://doi.org/10.1007/s11426-009-0223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0223-8

Keywords

Navigation