Skip to main content
Log in

Random difference equations with subexponential innovations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We consider the random difference equations S = d (X + S)Y and T = d X + TY, where = d denotes equality in distribution, X and Y are two nonnegative random variables, and S and T on the right-hand side are independent of (X, Y). Under the assumptions that X follows a subexponential distribution with a nonzero lower Karamata index, that Y takes values in [0, 1] and is not degenerate at 0 or 1, and that (X, Y) fulfills a certain dependence structure via the conditional tail probability of X given Y, we derive some asymptotic formulas for the tail probabilities of the weak solutions S and T to these equations. In doing so we also obtain some by-products which are interesting in their own right.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsmeyer G, Mentemeier S. Tail behaviour of stationary solutions of random difference equations: The case of regular matrices. J Difference Equ Appl, 2012, 18: 1305–1332

    Article  MathSciNet  MATH  Google Scholar 

  2. Asimit A V, Badescu A L. Extremes on the discounted aggregate claims in a time dependent risk model. Scand Actuar J, 2010, 2010: 93–104

    Article  MathSciNet  MATH  Google Scholar 

  3. Asimit A V, Furman E, Tang Q, et al. Asymptotics for risk capital allocations based on conditional tail expectation. Insurance Math Econom, 2011, 49: 310–324

    Article  MathSciNet  MATH  Google Scholar 

  4. Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987

    Book  MATH  Google Scholar 

  5. Buraczewski D, Damek E, Mikosch T. Stochastic Models with Power-Law Tails. New York: Springer, 2016

    Book  MATH  Google Scholar 

  6. Buraczewski D, Damek E, Mikosch T, et al. Large deviations for solutions to stochastic recurrence equations under Kesten’s condition. Ann Probab, 2013, 41: 2755–2790

    Article  MathSciNet  MATH  Google Scholar 

  7. Buraczewski D, Damek E, Mirek M. Asymptotics of stationary solutions of multivariate stochastic recursions with heavy tailed inputs and related limit theorems. Stochastic Process Appl, 2012, 122: 42–67

    Article  MathSciNet  MATH  Google Scholar 

  8. Chamayou J, Letac G. Explicit stationary distributions for compositions of random functions and products of random matrices. J Theoret Probab, 1991, 4: 3–36

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen Y, Yang Y. Ruin probabilities with insurance and financial risks having an FGM dependence structure. Sci China Math, 2014, 57: 1071–1082

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Y, Yuen K C. Precise large deviations of aggregate claims in a size-dependent renewal risk model. Insurance Math Econom, 2012, 51: 457–461

    Article  MathSciNet  MATH  Google Scholar 

  11. Cline D B H. Convolution tails, product tails and domains of attraction. Probab Theory Related Fields, 1986, 72: 529–557

    Article  MathSciNet  MATH  Google Scholar 

  12. Collamore J F. Random recurrence equations and ruin in a Markov-dependent stochastic economic environment. Ann Appl Probab, 2009, 19: 1404–1458

    Article  MathSciNet  MATH  Google Scholar 

  13. Denisov D, Zwart B. On a theorem of Breiman and a class of random difference equations. J Appl Probab, 2007, 44: 1031–1046

    Article  MathSciNet  MATH  Google Scholar 

  14. Dufresne D. The distribution of a perpetuity, with applications to risk theory and pension funding. Scand Actuar J, 1990, 1990: 39–79

    Article  MathSciNet  MATH  Google Scholar 

  15. Dufresne D. On the stochastic equation L(X) = L[B(X + C)] and a property of gamma distributions. Bernoulli, 1996, 2: 287–291

    MathSciNet  MATH  Google Scholar 

  16. Dyszewski P. Iterated random functions and slowly varying tails. Stochastic Process Appl, 2016, 126: 392–413

    Article  MathSciNet  MATH  Google Scholar 

  17. Embrechts P, Goldie C M. Perpetuities and random equations. In: Contribution to Asymptotic Statistics. Berlin-Heidelberg: Springer-Verlag, 1994, 75–86

    Google Scholar 

  18. Embrechts P, Klüppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin: Springer-Verlag, 1997

    Book  MATH  Google Scholar 

  19. Foss S, Korshunov D, Zachary S. An Introduction to Heavy-Tailed and Subexponential Distribution, 2nd ed. New York: Springer, 2013

    Book  MATH  Google Scholar 

  20. Goldie C M. Implicit renewal theory and tails of solutions of random equations. Ann Appl Probab, 1991, 1: 126–166

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldie C M, Grübel R. Perpetuities with thin tails. Adv in Appl Probab, 1996, 28: 463–480

    Article  MathSciNet  MATH  Google Scholar 

  22. Grey D R. Regular variation in the tail behaviour of solutions of random difference equations. Ann Appl Probab, 1994, 4: 169–183

    Article  MathSciNet  MATH  Google Scholar 

  23. Hitczenko P, Wesołowski J. Perpetuities with thin tails revisited. Ann Appl Probab, 2009, 19: 2080–2101

    Article  MathSciNet  MATH  Google Scholar 

  24. Hitczenko P, Wesołowski J. Renorming divergent perpetuities. Bernoulli, 2011, 17: 880–894

    Article  MathSciNet  MATH  Google Scholar 

  25. Joe H. Dependence Modeling with Copulas. Boca Raton: CRC Press, 2015

    MATH  Google Scholar 

  26. Kesten H. Random difference equations and renewal theory for products of random matrices. Acta Math, 1973, 131: 207–248

    Article  MathSciNet  MATH  Google Scholar 

  27. Kevei P. A note on the Kesten–Grinceviˇcius–Goldie theorem. Electron Comm Probab, 2016, 21: 1–12

    Article  MathSciNet  MATH  Google Scholar 

  28. Konstantinides D G, Mikosch T. Large deviations and ruin probabilities for solutions to stochastic recurrence equations with heavy-tailed innovations. Ann Probab, 2005, 39: 1992–2035

    Article  MathSciNet  MATH  Google Scholar 

  29. Lehtomaa J. Asymptotic behaviour of ruin probabilities in a general discrete risk model using moment indices. J Theoret Probab, 2015, 28: 1380–1405

    Article  MathSciNet  MATH  Google Scholar 

  30. Li J, Tang Q. Interplay of insurance and financial risks in a discrete-time model with strongly regular variation. Bernoulli, 2015, 21: 1800–1823

    Article  MathSciNet  MATH  Google Scholar 

  31. Li J, Tang Q, Wu R. Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv in Appl Probab, 2010, 42: 1126–1146

    Article  MathSciNet  MATH  Google Scholar 

  32. Milevsky M. The present value of a stochastic perpetuity and the Gamma distribution. Insurance Math Econom, 1997, 20: 243–250

    Article  MathSciNet  MATH  Google Scholar 

  33. Nelsen R B. An Introduction to Copulas, 2nd ed. New York: Springer, 2006

    MATH  Google Scholar 

  34. Takahashi H, Kanagawa S, Yoshihara K I. Asymptotic behavior of solutions of some difference equations defined by weakly dependent random vectors. Stochastic Anal Appl, 2015, 33: 740–755

    Article  MathSciNet  MATH  Google Scholar 

  35. Tang Q. The subexponentiality of products revisited. Extremes, 2006, 9: 231–241

    Article  MathSciNet  MATH  Google Scholar 

  36. Tang Q, Tsitsiashvili G. Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks. Stochastic Process Appl, 2003, 108: 299–325

    Article  MathSciNet  MATH  Google Scholar 

  37. Tang Q, Yuan Z. Randomly weighted sums of subexponential random variables with application to capital allocation. Extremes, 2014, 17: 467–493

    Article  MathSciNet  MATH  Google Scholar 

  38. Vervaat W. On a stochastic difference equation and a representation of non-negative infinitely divisible random variables. Adv in Appl Probab, 1979, 11: 750–783

    MathSciNet  MATH  Google Scholar 

  39. Yang Y, Konstantinides D G. Asymptotics for ruin probabilities in a discrete-time risk model with dependent financial and insurance risks. Scand Actuar J, 2015, 2015: 641–659

    Article  MathSciNet  Google Scholar 

  40. Yang Y, Wang Y. Tail behavior of the product of two dependent random variables with applications to risk theory. Extremes, 2013, 16: 55–74

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiHe Tang.

Additional information

In memory of Professor Xiru Chen (1934–2005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Yuan, Z. Random difference equations with subexponential innovations. Sci. China Math. 59, 2411–2426 (2016). https://doi.org/10.1007/s11425-016-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0146-0

Keywords

MSC(2010)

Navigation