Skip to main content
Log in

Well-posedness of a kind of nonlinear coupled system of fractional differential equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured by a fractional differential operator, which is defined in the Riemann-Liouville sense, and a nonlinear term in which different solution components are coupled. The analysis is based on the reduction of the given system to an equivalent system of integral equations. By means of the nonlinear alternative of Leray-Schauder, the existence of solutions of the factional differential system is obtained. The uniqueness is established by using the Banach contraction principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal O P. Formulation of Euler-Lagrange equations for fractional variational problems. J Math Anal Appl, 2002, 272: 368–379

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal O P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn, 2004, 38: 191–206

    Article  MathSciNet  Google Scholar 

  3. Ahmad B, Alsaedi A. Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl, 2010, 2010: 1–17

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahmad B, Nieto J J. Existence of solutions for nonlocal boundary value problems of higher order nonlinear fractional differential equations. Abstr Appl Anal, 2009, 2009: 1–11

    Article  MathSciNet  MATH  Google Scholar 

  5. Ahmad B, Nieto J J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput Math Appl, 2009, 58: 1838–1843

    Article  MathSciNet  MATH  Google Scholar 

  6. Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastically damped structures. J Guid Control Dyn, 1991, 14: 304–311

  7. Bai C. On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal, 2010, 72: 916–924

    Article  MathSciNet  MATH  Google Scholar 

  8. Bai C, Fang J. The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl Math Comput, 2004, 150: 611–621

    MathSciNet  MATH  Google Scholar 

  9. Benson D A, Schumer R, Meerschaert M M, et al. Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp Por Media, 2001, 42: 211–240

    Article  MathSciNet  Google Scholar 

  10. Caputo M. Linear models of dissipation whose Q is almost frequency independent-II. Geophys J R Astron Soc, 1967, 13: 529–539

    Article  MathSciNet  Google Scholar 

  11. Daftardar-Gejji V. Positive solutions of a system of non-autonomous fractional differential equations. J Math Anal Appl, 2005, 302: 56–64

    Article  MathSciNet  MATH  Google Scholar 

  12. Delboso D, Rodino L. Existence and uniqueness for a nonlinear fractional differential equation. J Math Anal Appl, 1996, 204: 609–625

    Article  MathSciNet  Google Scholar 

  13. Diethelm K. The Analysis of Fractional Differential Equations. Berlin: Springer-Verlag, 2010

    Book  MATH  Google Scholar 

  14. Fucik S, Kufner A. Nonlinear Differential Equations. Amsterdam: Elsevier Scientific, 1980

    MATH  Google Scholar 

  15. Kelly J F, McGough R J. Fractal ladder models and power law wave equations. J Acoust Soc Am, 2009, 126: 2072–2081

    Article  Google Scholar 

  16. Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006

    MATH  Google Scholar 

  17. Kirchner J W, Feng X, Neal C. Fractal streamchemistry and its implications for contaminant transport in catchments. Nature, 2000, 403: 524–526

    Article  Google Scholar 

  18. Koeller R C. Applcation of fractional calculus to the theory of viscoelasticity. J Appl Mech, 1984, 51: 229–307

    Article  MathSciNet  Google Scholar 

  19. Kusnezov D, Bulgac A, Dang G D. Quantum levy processes and fractional kinetics. Phys Rev Lett, 1999, 82: 1136–1139

    Article  Google Scholar 

  20. Li C, Deng W. Remarks on fractional derivatives. Appl Math Comput, 2007, 187: 77–84

    MathSciNet  MATH  Google Scholar 

  21. Li C, Luo X, Zhou Y. Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput Math Appl, 2010, 59: 1363–1375

    Article  MathSciNet  MATH  Google Scholar 

  22. Li X, Xu C. A space-time spectral method for the time fractional diffusion equation. SIAM J Numer Anal, 2009, 47: 2108–2131

    Article  MathSciNet  MATH  Google Scholar 

  23. Li X, Xu C. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun Comput Phys, 2010, 8: 1016–1051

    MathSciNet  Google Scholar 

  24. Li Y, Sang Y, Zhang H. Solvability of a coupled system of nonlinear fractional differential equations with fractional integral conditions. In: Journal of Applied Mathematics and Computing. Berlin-Heidelberg: Springer, 2015: 1–19

  25. Liouville J. Mémoire sur quelques questions de géométrie et de mécanique, et sur unnouvean genre de calcul pour résoudre ces questions. J L’Ecole Roy Polytéchn, 1832, 13: 1–69

    Google Scholar 

  26. Meerschaert M M, Scalas E. Coupled continuous time random walks in finance. Phys A, 2006, 390: 114–118

    Article  MathSciNet  Google Scholar 

  27. Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993

    MATH  Google Scholar 

  28. Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974

    MATH  Google Scholar 

  29. Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999

    MATH  Google Scholar 

  30. Qian D, Li C, Agarwal R P, et al. Stability analysis of fractional differential system with Riemann-Liouville derivative. Math Comput Model, 2010, 56: 862–874

    Article  MathSciNet  MATH  Google Scholar 

  31. Raberto M, Scalas E, Mainardi F. Waiting-times and returns in high-frequency finanical data: An empirical study. Phys A, 2002, 314: 749–755

    Article  MATH  Google Scholar 

  32. Riemann B. Versuch einer allgemeinen auffassung der intergration und differentiation. In: Gesammelte Mathematische Werke und Wissenschaftlicher. Leipzig: Teubner, 1876, 331–344

    Google Scholar 

  33. Riewe F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys A, 1996, 53: 1890–1899

    MathSciNet  Google Scholar 

  34. Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. Yverdon: Gordon and Breach Science, 1993

    MATH  Google Scholar 

  35. Sokolov I M, Klafter J, Blumen A. Fractional kinetics. Phys Today, 2002, 55: 48–54

    Article  Google Scholar 

  36. Su X. Existence of solution of boundary value problem for coupled system of fractional differential equations. Engrg Math, 2009, 26: 134–137

    Google Scholar 

  37. Sun S, Li Q, Li Y. Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput Math Appl, 2012, 64: 3310–3320

    Article  MathSciNet  MATH  Google Scholar 

  38. Weissinger J. Zur theorie und anwendung des iterationsverfahrens. Math Nachr, 1952, 8: 193–212

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanJu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Xu, C. Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016). https://doi.org/10.1007/s11425-015-5113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-015-5113-2

Keywords

MSC(2010)

Navigation