Skip to main content
Log in

Convergence analysis of projected gradient descent for Schatten-p nonconvex matrix recovery

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization (0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization (0 < p < 1) problem. Based on the matrix restricted isometry property (M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahmani S, Raj B. A unifying analysis of projected gradient descent for lp-constrained least squares. Appl Comput Harmon Anal, 2013, 34: 366–378

    Article  MATH  MathSciNet  Google Scholar 

  2. Blumensath T, Davies M. Iterative thresholding for sparse approximations. J Fourier Anal Appl, 2008, 14: 629–654

    Article  MATH  MathSciNet  Google Scholar 

  3. Blumensath T, Davies M. Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal, 2009, 27: 265–274

    Article  MATH  MathSciNet  Google Scholar 

  4. Cai J F, Candès E J, Shen Z W. A singular value thresholding algorithm for matrix completion. SIAM J Optim, 2010, 20: 1956–1982

    Article  MATH  MathSciNet  Google Scholar 

  5. Cai T, Zhang A. Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl Comput Harmon Anal, 2013, 35: 74–93

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai T, Zhang A. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans Inform Theory, 2014, 60: 122–132

    Article  MathSciNet  Google Scholar 

  7. Candès E J, Plan Y. Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements. IEEE Trans Inform Theory, 2011, 57: 2342–2359

    Article  MathSciNet  Google Scholar 

  8. Candès E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math, 2009, 9: 717–772

    Article  MATH  MathSciNet  Google Scholar 

  9. Deng Y, Dai Q, Liu R, et al. Low-rank structure learning via nonconvex heuristic recovery. IEEE Trans Neural Netw Learn Syst, 2013, 24: 383–396

    Article  Google Scholar 

  10. Fazel M. Matrix rank minimization with applications. PhD thesis. Stanford: Stanford University, 2002

    Google Scholar 

  11. Fornasier M, Rauhut H, Ward R. Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J Optim, 2011, 21: 1614–1640

    Article  MATH  MathSciNet  Google Scholar 

  12. Foucart S. Sparse recovery algorithms: Sufficient conditions in terms of restricted isometry constants. Springer Proc Math, 2012, 13: 65–77

    Article  MathSciNet  Google Scholar 

  13. Goldfarb D, Ma S. Convergence of fixed-point continuation algorithms for matrix rank minimization. Found Comput Math, 2011, 11: 183–210

    Article  MATH  MathSciNet  Google Scholar 

  14. Gross D. Recovery Low-rank matrices from few coefficients in any basis. IEEE Trans Inform Theory, 2011, 57: 1548–1566

    Article  MathSciNet  Google Scholar 

  15. Gross D, Liu Y K, Flammia S T, et al. Quantum state tomography via compressed sensing. Phys Rev Lett, 2010, 105: 150401

    Article  Google Scholar 

  16. Haldar J, Liang Z. Spatiotemporal imaging with partially separable functions: A matrix recovery approach. In: Proc IEEE Int Symp Biomed Imag. New York: IEEE, 2010, 716–719

    Google Scholar 

  17. Ji H, Liu C, Shen Z W, et al. Robust video denoising using low rank matrix completion. In: IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE Computer Society, 2010, 1791–1798

    Google Scholar 

  18. Kramer F, Ward R. New and improved Johnson-Lindenstrauss embeddings via the restricted isometry property. SIAM J Math Anal, 2011, 43: 1269–1281

    Article  MathSciNet  Google Scholar 

  19. Lai M, Xu Y, Yin W. Improved iteratively reweighted least square for unconstrained smoothed l q minimization. SIAM J Numer Anal, 2013, 51: 927–957

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee K, Bresler Y. ADMiRA: Atomic decomposition for minimum rank approximation. IEEE Trans Inform Theory, 2010, 56: 4402–4416

    Article  MathSciNet  Google Scholar 

  21. Lewis A S. The convex analysis of unitarily invariant matrix norms. J Convex Anal, 1995, 2: 173–183

    MATH  MathSciNet  Google Scholar 

  22. Lin J, Li S. Convergence of projected Landweber iteration for matrix rank minimization. Appl Comput Harmon Anal, 2014, 36: 316–325

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu L, Huang W, Chen D R. Exact minimum rank approximation via Schatten p-norm minimization. J Comput Appl Math, 2014, 267: 218–227

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system identification. SIAM J Matrix Anal Appl, 2008, 31: 1235–1256

    Article  MathSciNet  Google Scholar 

  25. Ma S, Goldfarb D, Chen L. Fixed point and Bregman iterative methods for matrix rank minimization. Math Program, 2011, 128: 321–353

    Article  MATH  MathSciNet  Google Scholar 

  26. Majumdar A, Ward R K. An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magnetic Resonance Imaging, 2011, 29: 408–417

    Article  Google Scholar 

  27. Marjanovic G, Solo V. On l q Optimization and Matrix Completion. IEEE Trans Signal Process, 2012, 60: 5714–5724

    Article  MathSciNet  Google Scholar 

  28. Mazumder R, Hastie T, Tibshirani R. Spectral regularization algorithms for learning large incomplete matrices. J Mach Learn Res, 2010, 11: 2287–2322

    MATH  MathSciNet  Google Scholar 

  29. Meka R, Jain P, Dhillon L S. Guaranteed rank minimization via singular value projection. ArXiv:0909.5457, 2009

    Google Scholar 

  30. Mohan K, Fazel M. Reweighted nuclear norm minimization with application to system identification. In: Proc of the American Control Conference. Piscataway, NJ: IEEE, 2010: 2953–2959

    Google Scholar 

  31. Mohan K, Fazel M. Iterative reweighted least squares for matrix rank minimization. In: 48th Annual Allerton Conference on Communication, Control and Computing (Allerton). Piscataway, NJ: IEEE, 2010: 653–661

    Chapter  Google Scholar 

  32. Needell D, Tropp J. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal, 2009, 26: 301–321

    Article  MATH  MathSciNet  Google Scholar 

  33. Netflix Prize [Online]. Available: http://www.netflixprize.com/.

  34. Oymak S, Mohan K, Fazel M, et al. A simplified approach to recovery conditions for low rank matrices. In: IEEE International Symposium on Information Theory Proceedings. Piscataway, NJ: IEEE, 2011: 2318–2322

    Google Scholar 

  35. Recht B, Fazel M, Parrilo P. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev, 2010, 52: 471–501

    Article  MATH  MathSciNet  Google Scholar 

  36. Singer A. A remark on global positioning from local distances. Proc Natl Acad Sci USA, 2008, 105: 9507

    Article  MATH  MathSciNet  Google Scholar 

  37. Srebro N, Rennie J F M, Jakola T S. Maximum-margin matrix factorization. In: Advance in Neural Information Processing Systems. Cambridge-Massachusetts: MIT press, 2005

    Google Scholar 

  38. Toh K C, Yun S W. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac J Optim, 2010, 6: 615–640

    MATH  MathSciNet  Google Scholar 

  39. Wang H, Li S. The bounds of restricted isometry constants for low rank matrices recovery. Sci China Math, 2013, 56: 1117–1127

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang H, Cheng L Z. Projected Landweber iteration for matrix completion. J Comput Appl Math, 2010, 235: 593–601

    Article  MATH  MathSciNet  Google Scholar 

  41. Zhang M, Huang Z, Zhang Y. Restricted p-Isometry Properties of Nonconvex matrix recovery. IEEE Trans Inform Theory, 2013, 59: 4316–4323

    Article  MathSciNet  Google Scholar 

  42. Zhao B, Haldar J, Brinegar C, et al. Low rank matrix recovery for real-time cardiac MRI. In: Proc IEEE Int Symp Biomed Imag. New York: IEEE, 2010, 996–999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Li, S. Convergence analysis of projected gradient descent for Schatten-p nonconvex matrix recovery. Sci. China Math. 58, 845–858 (2015). https://doi.org/10.1007/s11425-014-4949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4949-1

Keywords

MSC(2010)

Navigation