Skip to main content
Log in

Liouville type theorems for Schrödinger systems

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We study positive solutions to the following higher order Schrödinger system with Dirichlet boundary conditions on a half space:

$$\left\{ \begin{gathered} ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _1 } (x)v^{\gamma _1 } (x), in R_ + ^n , \hfill \\ ( - \Delta )^{\tfrac{\alpha } {2}} u(x) = u^{\beta _2 } (x)v^{\gamma _2 } (x), in R_ + ^n , \hfill \\ u = \tfrac{{\partial u}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} u}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ v = \tfrac{{\partial v}} {{\partial x_n }} = \cdots = \tfrac{{\partial ^{\tfrac{\alpha } {2} - 1} v}} {{\partial x_n \tfrac{\alpha } {2} - 1}} = 0, on \partial R_ + ^n , \hfill \\ \end{gathered} \right.$$
((0.1))

where α is any even number between 0 and n. This PDE system is closely related to the integral system

$$\left\{ {\begin{array}{*{20}c} {u(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _1 } (y)v^{\gamma _1 } (y)dy,} } \\ {v(x) = \int_{R_ + ^n } {G(x,y)u^{\beta _2 } (y)v^{\gamma _2 } (y)dy,} } \\ \end{array} } \right.$$
((0.2))

where G is the corresponding Green’s function on the half space. More precisely, we show that every solution to (0.2) satisfies (0.1), and we believe that the converse is also true. We establish a Liouville type theorem — the non-existence of positive solutions to (0.2) under a very weak condition that u and v are only locally integrable. Some new ideas are involved in the proof, which can be applied to a system of more equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berestycki H, Nirenberg L. On the method of moving planes and the sliding method. Bol Soc Brazs Mat, 1991, 1: 1–37

    Article  MathSciNet  Google Scholar 

  2. Caffarelli L, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1989, XLII: 271–297

    Article  MathSciNet  Google Scholar 

  3. Chen D Z, Ma L. A Liouville type theorem for an integral system. Comm Pure Appl Anal, 2006, 5: 855–859

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen W X, Li C M. A priori estimates for prescribing scalar curvature equations. Ann of Math, 1997, 145: 547–564

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen W X, Li C M. Regularity of solutions for a system of integral equations. Comm Pure Appl Anal, 2005, 4: 1–8

    Google Scholar 

  6. Chen W X, Li C M. The best constant in a weighted Hardy-Littlewood-Sobolev inequality. Proc Amer Math Soc, 2008, 136: 955–962

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen W X, Li C M. An integral system and the Lane-Emden conjecture. Discrete Contin Dyn Syst, 2009, 4: 1167–1184

    Google Scholar 

  8. Chen W X, Li C M. Methods on Nonlinear Elliptic Equations. New York: American Institute of Mathematical Sciences, 2010

    MATH  Google Scholar 

  9. Chen W X, Li C M, Ou B. Qualitative properties of solutions for an integral equation. Discrete Contin Dyn Syst, 2005, 12: 347–354

    MathSciNet  MATH  Google Scholar 

  10. Chen W X, Li C M, Ou B. Classification of solutions for a system of integral equations. Comm PDEs, 2005, 30: 59–65

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen W X, Li C M, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59: 330–343

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen W X, Zhu J Y. Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems. J Math Anal Appl, 2011, 377: 744–753

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang Y Q, Chen W X. A Liouville type theorem for poly-harmonic Dirichlet problem in a half space. Adv Math, 2012, 229: 2835–2867

    Article  MathSciNet  MATH  Google Scholar 

  14. Fang Y Q, Zhang J H. Nonexistence of positive solution for an integral equation on a half-space R n+ . Comm Pure Appl Anal, 2013, 12: 663–678

    Article  MathSciNet  MATH  Google Scholar 

  15. Gidas B, Ni W M, Nirenberg L. Symmetry of Positive Solutions of Nonlinear Elliptic Equations in R n. New York: Academic Press, 1981

    Google Scholar 

  16. Jin C, Li C M. Symmetry of solutions to some systems of integral equations. Proc Amer Math Soc, 2006, 134: 1661–1670

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanna T, Lakshmanan M. Exact soliton solutions, shape changing collisions and partially coherent solitons in coupled nonlinear Schröedinger equations. Phys Rev Lett, 2001, 86: 5043–5046

    Article  Google Scholar 

  18. Li C M, Lim J. The singularity analysis of solutions to some integral equations. Comm Pure Appl Anal, 2007, 6: 453–464

    Article  MathSciNet  MATH  Google Scholar 

  19. Li C M, Ma L. Uniqueness of positive bound states to Schrödinger systems with critical exponents. SIAM J Math Anal, 2008, 40: 1049–1057

    Article  MathSciNet  MATH  Google Scholar 

  20. Li D Y, Zhuo R. An integral equation on half space. Proc Amer Math Soc, 2010, 138: 2779–2791

    Article  MathSciNet  MATH  Google Scholar 

  21. Lieb E. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann of Math, 1983, 118: 349–374

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin T C, Wei J C. Spikes in two coupled nonlinear Schrödinger equations. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22: 403–439

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma C, Chen WX, Li C M. Regularity of solutions for an integral system ofWolff type. Adv Math, 2011, 226: 2676–2699

    Article  MathSciNet  MATH  Google Scholar 

  24. Ma L, Chen D Z. Radial symmetry and monotonicity for an integral equation. J Math Anal Appl, 2008, 342: 943–949

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma L, Zhao L. Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system. J Math Phys, 2008, doi: 10.1063/1.2939238

    Google Scholar 

  26. Ou B. A remark on a singular integral equation. Houston J Math, 1999, 25: 181–184

    MathSciNet  MATH  Google Scholar 

  27. Reichel W, Weth T. A priori bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems. Math Z, 2009, 261: 805–827

    Article  MathSciNet  MATH  Google Scholar 

  28. Serrin J. A symmetry problem in potential theory. Arch Rational Mech Anal, 1971, 43: 304–318

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei J C, Xu X W. Classification of solutions of higher order conformally invariant equations. Math Ann, 1999, 313: 207–228

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhuo R, Li D Y. A system of integral equations on half space. J Math Anal Appl, 2011, 381: 392–401

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Zhuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, R., Li, F. Liouville type theorems for Schrödinger systems. Sci. China Math. 58, 179–196 (2015). https://doi.org/10.1007/s11425-014-4925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4925-9

Keywords

MSC(2010)

Navigation