Skip to main content
Log in

Congruences involving generalized central trinomial coefficients

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For integers b and c the generalized central trinomial coefficient T n (b, c) denotes the coefficient of x n in the expansion of (x 2 + bx + c)n. Those T n = T n (1, 1) (n = 0, 1, 2, …) are the usual central trinomial coefficients, and T n (3, 2) coincides with the Delannoy number \(D_n = \sum\nolimits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} \left( {\begin{array}{*{20}c} {n + k} \\ k \\ \end{array} } \right)\) in combinatorics. We investigate congruences involving generalized central trinomial coefficients systematically. Here are some typical results: For each n = 1, 2, 3, …, we have

$$\sum\limits_{k = 0}^{n - 1} {\left( {2k + 1} \right)T_k \left( {b,c} \right)^2 \left( {b^2 - 4c} \right)^{n - 1 - k} \equiv 0 \left( {\bmod n^2 } \right)}$$

and in particular \(\left. {n^2 } \right|\sum\nolimits_{k = 0}^{n - 1} {\left( {2k + 1} \right)D_k^2 }\) is an odd prime then

$$\sum\limits_{k = 0}^{p - 1} {T_k^2 \equiv \left( {\frac{{ - 1}} {p}} \right)\left( {\bmod p} \right) and } \sum\limits_{k = 0}^{p - 1} {D_k^2 \equiv \left( {\frac{2} {p}} \right)\left( {\bmod p} \right), }$$

where (−) denotes the Legendre symbol. We also raise several conjectures some of which involve parameters in the representations of primes by certain binary quadratic forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews G E. Euler’s “exemplum memorabile inductionis fallacis” and q-trinomial coefficients. J Amer Math Soc, 1990, 3: 653–669

    MATH  MathSciNet  Google Scholar 

  2. Andrews G E, Askey R, Roy R. Special Functions. Cambridge: Cambridge University Press, 1999

    Book  MATH  Google Scholar 

  3. Andrews G E, Baxter R J. Lattice gas generalization of the hard hexagon model (III): q-trinomial coefficients. J Statist Phys, 1987, 47: 297–330

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndt B C, Evans R J, Williams K S. Gauss and Jacobi Sums. New York: John Wiley & Sons, 1998

    MATH  Google Scholar 

  5. Cao H Q, Pan H. Some congruences for trinomial coefficients. ArXiv:1006.3025v2, 2010

    Google Scholar 

  6. Caughman J S, Haithcock C R, Veerman J J P. A note on lattice chains and Delannoy numbers. Discrete Math, 2008, 308: 2623–2628

    Article  MATH  MathSciNet  Google Scholar 

  7. Cox D A. Primes of the Form x 2 + ny 2. New York: John Wiley & Sons, 1989

    Google Scholar 

  8. Gould H W. Combinatorial Identities. New York: Morgantown Printing and Binding Co., 1972

    MATH  Google Scholar 

  9. Graham R L, Knuth D E, Patashnik O. Concrete Mathematics, 2nd ed. New York: Addison-Wesley, 1994

    MATH  Google Scholar 

  10. Granville A. The square of the Fermat quotient. Integers, 2004, 4: #A22, 3pp (electronic)

    MathSciNet  Google Scholar 

  11. Mattarei S, Tauraso R. Congruences for central binomial sums and finite polylogarithms. J Number Theory, 2013, 133: 131–157

    Article  MATH  MathSciNet  Google Scholar 

  12. Morley F. Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n + 1 is a prime. Ann Math, 1895, 9: 168–170

    Article  MATH  MathSciNet  Google Scholar 

  13. Noe T D. On the divisibility of generalized central trinomial coefficients. J Integer Seq, 2006, 9: Article 06.2.7, 12pp

  14. Petkovšek M, Wilf H S, Zeilberger D. A = B. Wellesley: A K Peters, 1996

    Google Scholar 

  15. Sloane N J A. Sequences A001006, A001850, A002426 in OEIS (On-Line Encyclopedia of Integer Sequences). http://oeis.org

  16. Sun Z H. Congruences concerning Legendre polynomials. Proc Amer Math Soc, 2011, 139: 1915–1929

    Article  MATH  MathSciNet  Google Scholar 

  17. Sun Z H. Congruences concerning Legendre polynomials (II). ArXiv:1012.3898v2, 2012

    Google Scholar 

  18. Sun Z W. Binomial coefficients, Catalan numbers and Lucas quotients. Sci China Math, 2010, 53: 2473–2488

    Article  MATH  MathSciNet  Google Scholar 

  19. Sun Z W. On congruences related to central binomial coefficients. J Number Theory, 2011, 131: 2219–2238

    Article  MATH  MathSciNet  Google Scholar 

  20. Sun Z W. On Delannoy numbers and Schröder numbers. J Number Theory, 2011, 131: 2387–2397

    Article  MATH  MathSciNet  Google Scholar 

  21. Sun Z W, Tauraso R. New congruences for central binomial coefficients. Adv Appl Math, 2010, 45: 125–148

    Article  MATH  MathSciNet  Google Scholar 

  22. Wilf H S. Generatingfunctionology. New York: Academic Press, 1990

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, ZW. Congruences involving generalized central trinomial coefficients. Sci. China Math. 57, 1375–1400 (2014). https://doi.org/10.1007/s11425-014-4809-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4809-z

Keywords

MSC(2010)

Navigation