Skip to main content
Log in

Fujita phenomena in nonlinear pseudo-parabolic system

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the Cauchy problem to the nonlinear pseudo-parabolic system u t − ΔuαΔu t = v p, v t −ΔvαΔv t = u q with p, q ⩾ 1 and pq > 1, where the viscous terms of third order are included. We first find the critical Fujita exponent, and then determine the second critical exponent to characterize the critical space-decay rate of initial data in the co-existence region of global and non-global solutions. Moreover, time-decay profiles are obtained for the global solutions. It can be found that, different from those for the situations of general semilinear heat systems, we have to use distinctive techniques to treat the influence from the viscous terms of the highest order. To fix the non-global solutions, we exploit the test function method, instead of the general Kaplan method for heat systems. To obtain the global solutions, we apply the L p-L q technique to establish some uniform L m time-decay estimates. In particular, under a suitable classification for the nonlinear parameters and the initial data, various L m time-decay estimates in the procedure enable us to arrive at the time-decay profiles of solutions to the system. It is mentioned that the general scaling method for parabolic problems relies heavily on regularizing effect to establish the compactness of approximating solutions, which cannot be directly realized here due to absence of the smooth effect in the pseudo-parabolic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C J, Bona J L, Schonbek M E. Decay of solutions of some nonlinear wave equations. J Differential Equations, 1989, 81: 1–49

    Article  MATH  MathSciNet  Google Scholar 

  2. Barenblat G, Zheltov I, Kochiva I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Math Mech, 1960, 24: 1286–1303

    Article  Google Scholar 

  3. Benachour S, Karch G, Laurençot Ph. Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations. J Math Pures Appl, 2004, 83: 1275–1308

    Article  MATH  MathSciNet  Google Scholar 

  4. Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems. Phil Trans Roy Soc London Ser A, 1972, 272: 47–78

    Article  MATH  MathSciNet  Google Scholar 

  5. Cao Y, Yin J X, Wang C P. Cauchy problems of semilinear pseudo-parabolic equations. J Differential Equations, 2009, 246: 4568–4590

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen P J, Gurtin M E. On a theory of heat conduction involving two temperatures. Z Angew Math Phys, 1968, 19: 614–627

    Article  MATH  Google Scholar 

  7. Deng K, Levine H A. The role of critical exponents in blow-up theorems: The sequel. J Math Anal Appl, 2000, 243: 85–126

    Article  MATH  MathSciNet  Google Scholar 

  8. Escobedo M, Herrero M A. Boundedness and blow-up for a semilinear reaction-diffusion system. J Differential Equations, 1991, 89: 176–202

    Article  MATH  MathSciNet  Google Scholar 

  9. Fujita H. On the blowing up of solution of the Cauchy problem for u t = Δu + u α+1. J Fac Sci Univ Tokyo, 1966, 13: 109–124

    MATH  Google Scholar 

  10. Gopala Rao V R, Ting T W. Solutions of pseudo-heat equations in the whole space. Arch Ration Mech Anal, 1972/73, 49: 57–78

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo J S, Guo Y Y. On a fast diffusion equation with source. Tohoku Math J, 2001, 53: 571–579

    Article  MATH  MathSciNet  Google Scholar 

  12. Kaikina E I, Naumkin P I, Shishmarev I A. The Cauchy problem for a Sobolev type equation with power like nonlinearity. Izv Math, 2005, 69: 59–111

    Article  MATH  MathSciNet  Google Scholar 

  13. Kamin S, Peletier L A. Large time behaviour of solutions of the heat equation with absorption. Ann Scuola Norm Sup Pisa Cl Sci, 1985, 12: 393–408

    MATH  MathSciNet  Google Scholar 

  14. Karch G. Asymptotic behaviour of solutions to some pesudoparabolic equations. Math Methods Appl Sci, 1997, 20: 271–289

    Article  MATH  MathSciNet  Google Scholar 

  15. Korpusov M O, Sveshnikov A G. Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type. J Math Sci, 2008, 148: 1–142

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee T Y, Ni W M. Global existence, large time behavior and life span on solution of a semilinear parabolic Cauchy problem. Trans Amer Math Soc, 1992, 333: 365–378

    Article  MATH  MathSciNet  Google Scholar 

  17. Levine H A. The role of critical exponents in blowup theorems. SIAM Rev, 1990, 32: 262–288

    Article  MATH  MathSciNet  Google Scholar 

  18. Li Y H, Cao Y, Yin J X, et al. Time periodic solutions for a viscous diffusion equation with nonlinear periodic sources. Electron J Qual Theory Differ Equ, 2011, 10: 1–19

    MathSciNet  Google Scholar 

  19. Lyashko S I. Generalized Control in Linear Systems (in Russian). Kiev: Naukova Dumka, 1998

    Google Scholar 

  20. Mitidieri E, Pohozaev S I. A priori estimates and blow-up of solutions of nonlineari partial differential equations and inequalities. Proc Steklov Inst Math, 2001, 234: 1–362

    MathSciNet  Google Scholar 

  21. Mochizuki K. Blow-up, life span and large time behavior of solutions of a weakly coupled system reaction-diffusion equations. Adv Math Appl Sci, 1998, 48: 175–198

    Article  Google Scholar 

  22. Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal, 2000, 39: 33–45

    Article  MATH  MathSciNet  Google Scholar 

  23. Narazaki T, Nishihara K. Asymptotic behavior of solutions for the damped wave equation with slowly decaying data. J Math Anal Appl, 2008, 338: 803–819

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi Y W. On the equation u t = Δu α+u β. Proc Roy Soc Edinburgh Sect A, 1993, 123: 373–390

    Article  MATH  MathSciNet  Google Scholar 

  25. Qi Y W, Wang M X. Critical exponents of quasilinear parabolic equations. J Math Anal Appl, 2002, 267: 264–280

    Article  MATH  MathSciNet  Google Scholar 

  26. Quittner P, Souplet P. Superlinear Parabolic Problems: Blow up, Globlal Existence and Steady States. Basel: Birkhäuser Advanced Texts, 2007

    Google Scholar 

  27. Souplet P, Winkler M. The influence of space dimension on the large-time behavior in a reaction-diffusion system modeling diallelic selection. J Math Biol, 2011, 62: 391–421

    Article  MATH  MathSciNet  Google Scholar 

  28. Takeda H. Global existence and nonexistence of solutions for a system of nonlinear damped wave equations. J Math Anal Appl, 2009, 360: 631–650

    Article  MATH  MathSciNet  Google Scholar 

  29. Wang C P, Zheng S N. Critical Fujita exponents of degenerate and singular parabolic equations. Proc Roy Soc Edinburgh Sect A, 2006, 136: 415–430

    Article  MATH  MathSciNet  Google Scholar 

  30. Weissler F B. Existence and non-existence of global solutions for semilinear equatiuon. Israel J Math, 1981, 6: 29–40

    Article  MathSciNet  Google Scholar 

  31. Yang C X, Cao Y, Zheng S N. Life span and second critical exponent for semilinear pseudo-parabolic equation. J Differential Equations, 2012, 253: 3286–3303

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhang H, Kong L H, Zheng S N. Propagations of singularities in a parabolic system with coupling nonlocal sources. Sci China Ser A, 2009, 52: 181–194.

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhang Q S. A new critical phenomenon for semilinear parabolic problems. J Math Anal Appl, 1998, 219: 125–139

    Article  MATH  MathSciNet  Google Scholar 

  34. Zheng S N, Wang C P. Large time behavior of solutions to a class of quasilinear parabolic equations with convection terms. Nonlinearity, 2008, 21: 2179–2200

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhu C R, Zhang W N. Persistence of bounded solutions to degenerate Sobolev-Galpern equations. Sci China Math, 2010, 53: 2831–2846.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SiNing Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Cao, Y. & Zheng, S. Fujita phenomena in nonlinear pseudo-parabolic system. Sci. China Math. 57, 555–568 (2014). https://doi.org/10.1007/s11425-013-4642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-013-4642-9

Keywords

MSC(2010)

Navigation