Skip to main content
Log in

An ethnomethodological perspective on how middle school students addressed a water quality problem

  • Research Article
  • Published:
Educational Technology Research and Development Aims and scope Submit manuscript

Abstract

Science educators increasingly call for students to address authentic scientific problems in science class. One form of authentic science problem—socioscientific issue—requires that students engage in complex reasoning by considering both scientific and social implications of problems. Computer-based scaffolding can support this process by giving students structure but also helping them focus on important problem elements. In this multiple case study from the ethnomethodological framework, we investigated how 7th-grade students from five small groups worked together to evaluate the credibility of evidence, make sense of data and evidence, and address a problem related to water quality in their local river. Data sources included video of students engaging in the unit, prompted interviews, database information, log data, and documents collected from computers. Results indicated that overall, the experimental small groups demonstrated more sophisticated epistemic beliefs and a more effective approach to solving the problem than the control small groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhras, F. N., & Self, J. A. (2002). Beyond intelligent tutoring systems: Situations, interactions, processes and affordances. Instructional Science, 30, 1–30. doi:10.1023/A:1013544300305.

    Article  Google Scholar 

  • Allen-Ramdial, S.-A. A., & Campbell, A. G. (2014). Reimagining the pipeline: Advancing STEM diversity, persistence, and success. BioScience, 64(7), 612–618. doi:10.1093/biosci/biu076.

    Article  Google Scholar 

  • Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12, 439–462. doi:10.1207/s15327051hci1204_5.

    Article  Google Scholar 

  • Belland, B. R. (2010). Portraits of middle school students constructing evidence-based arguments during problem-based learning: The impact of computer-based scaffolds. Educational Technology Research and Development, 58(3), 285–309. doi:10.1007/s11423-009-9139-4.

    Article  Google Scholar 

  • Belland, B. R. (2014). Scaffolding: Definition, current debates, and future directions. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of research on educational communications and technology (4th ed., pp. 505–518). New York, NY: Springer.

    Chapter  Google Scholar 

  • Belland, B. R. (2016). Instructional scaffolding in STEM Education: Strategies and efficacy evidence. Cham, Switzerland: Springer. http://www.springer.com/us/book/9783319025643

    Google Scholar 

  • Belland, B. R., & Drake, J. (2013). Toward a framework on how affordances and motives can drive different uses of computer-based scaffolds: Theory, evidence, and design implications. Educational Technology Research & Development, 61, 903–925. doi:10.1007/s11423-013-9313-6.

    Article  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Ertmer, P. A. (2009). Inclusion and problem-based learning: Roles of students in a mixed-ability group. Research on Middle Level Education, 32(9), 1–19.

    Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2008). A scaffolding framework to support the construction of evidence-based arguments among middle school students. Educational Technology Research and Development, 56(4), 401–422. doi:10.1007/s11423-007-9074-1.

    Article  Google Scholar 

  • Belland, B. R., Glazewski, K. D., & Richardson, J. C. (2011). Problem-based learning and argumentation: Testing a scaffolding framework to support middle school students’ creation of evidence-based arguments. Instructional Science, 39, 667–694. doi:10.1007/s11251-010-9148-z.

    Article  Google Scholar 

  • Belland, B. R., Gu, J., Armbrust, S., & Cook, B. (2015a). Scaffolding argumentation about water quality: A mixed method study in a rural middle school. Educational Technology Research & Development, 63(3), 325–353. doi:10.1007/s11423-015-9373-x.

    Article  Google Scholar 

  • Belland, B. R., Walker, A., Olsen, M. W., & Leary, H. (2015b). A pilot meta-analysis of computer-based scaffolding in STEM education. Educational Technology and Society, 18(1), 183–197.

    Google Scholar 

  • Barzilai, S., & Zohar, A. (2012). Epistemic thinking in action: Evaluating and integrating online sources. Cognition and Instruction, 30(1), 39–85. doi:10.1080/07370008.2011.636495

    Article  Google Scholar 

  • Berland, L. K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95(2), 191–216. doi:10.1002/sce.20420.

    Article  Google Scholar 

  • Bråten, I., Britt, M. A., Strømsø, H. I., & Rouet, J.-F. (2011). The role of epistemic beliefs in the comprehension of multiple expository texts: Toward an integrated model. Educational Psychologist, 46, 48–70. doi:10.1080/00461520.2011.538647.

    Article  Google Scholar 

  • Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2013). Justification beliefs and multiple-documents comprehension. European Journal of Psychology of Education, 28(3), 879–902. doi:10.1007/s10212-012-0145-2.

    Article  Google Scholar 

  • Bråten, I., Ferguson, L. E., Strømsø, H. I., & Anmarkrud, Ø. (2014). Students working with multiple conflicting documents on a scientific issue: Relations between epistemic cognition while reading and sourcing and argumentation in essays. British Journal of Educational Psychology, 84(1), 58–85. doi:10.1111/bjep.12005.

    Article  Google Scholar 

  • Britt, M. A., Richter, T., & Rouet, J.-F. (2014). Scientific literacy: The role of goal-directed reading and evaluation in understanding scientific information. Educational Psychologist, 49, 104–122. doi:10.1080/00461520.2014.916217.

    Article  Google Scholar 

  • Buehl, M. M. (2008). Assessing the multidimensionality of students’ epistemic beliefs across diverse culture. In M. S. Khine (Ed.), Knowing, knowledge and beliefs (pp. 65–112). Dordrecht, the Netherlands: Springer.

    Chapter  Google Scholar 

  • Çakir, M. P., Zemel, A., & Stahl, G. (2009). The joint organization of interaction within a multimodal CSCL medium. International Journal of Computer-Supported Collaborative Learning, 4(2), 115–149. doi:10.1007/s11412-009-9061-0.

    Article  Google Scholar 

  • Çalik, M., & Coll, R. K. (2012). Investigating socioscientific issues via scientific habits of mind: Development and validation of the scientific habits of mind survey. International Journal of Science Education, 34(12), 1909–1930. doi:10.1080/09500693.2012.685197.

    Article  Google Scholar 

  • Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46, 141–167. doi:10.1080/00461520.2011.587722.

    Article  Google Scholar 

  • Crick, F. (1974). The double helix: a personal view. Nature, 248(5451), 766–769. doi:10.1038/248766a0.

    Article  Google Scholar 

  • Day, D., & Kjaerbeck, S. (2013). “Positioning” in the conversation analytic approach. Narrative Inquiry, 23(1), 16–39. doi:10.1075/ni.23.1.02day.

    Article  Google Scholar 

  • Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268–291. doi:10.3102/0091732X07309371.

    Article  Google Scholar 

  • Erduran, S., & Jiménez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research. New York, NY: Springer.

    Google Scholar 

  • Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. Journal of Research in Science Teaching, 50(2), 209–237. doi:10.1002/tea.21076.

    Article  Google Scholar 

  • Feinstein, N. W., Allen, S., & Jenkins, E. (2013). Outside the pipeline: Reimagining science education for nonscientists. Science, 340(6130), 314–317. doi:10.1126/science.1230855.

    Article  Google Scholar 

  • Ferguson, L. E., Bråten, I., & Strømsø, H. I. (2012). Epistemic cognition when students read multiple documents containing conflicting scientific evidence: A think-aloud study. Learning and Instruction, 22, 103–120. doi:10.1016/j.learninstruc.2011.08.002.

    Article  Google Scholar 

  • Ford, M. J. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30, 207–245. doi:10.1080/07370008.2012.689383.

    Article  Google Scholar 

  • Francis, D., & Hester, S. (2004). An invitation to ethnomethodology. London, UK: Sage.

    Book  Google Scholar 

  • Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Garfinkel, H. (2002). Ethnomethodology’s program: Working out Durkheim’s aphorism. Lanham, MD: Rowman & Littlefield.

    Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. Chicago, IL: Aldine.

    Google Scholar 

  • Glenn, P. J., Koschmann, T., & Conlee, M. (1999). Theory presentation and assessment in a problem-based learning group. Discourse Processes, 27(2), 119–133. doi:10.1080/01638539909545054.

    Article  Google Scholar 

  • Gray, W. A., & Albert, W. (2013). Create a STEM pipeline for students who become engineering majors who become engineers. Leadership and Management in Engineering, 13(1), 42–46. doi:10.1061/(ASCE)LM.1943-5630.0000210.

    Article  Google Scholar 

  • Greene, J., Azevedo, R., & Torney-Purta, J. (2008). Modeling epistemic and ontological cognition: Philosophical perspectives and methodological directions. Educational Psychologist, 43, 142–160. doi:10.1080/00461520802178458.

    Article  Google Scholar 

  • Greene, J., Muis, K. R., & Pieschl, S. (2010). The role of epistemic beliefs in students’ self-regulated learning with computer-based learning environments: Conceptual and methodological issues. Educational Psychologist, 45, 245–257. doi:10.1080/00461520.2010.515932.

    Article  Google Scholar 

  • Hannafin, M., Land, S., & Oliver, K. (1999). Open-ended learning environments: Foundations, methods, and models. In C. M. Reigeluth (Ed.), Instructional design theories and models: Volume II: A new paradigm of instructional theory (pp. 115–140). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hawkins, J., & Pea, R. D. (1987). Tools for bridging the cultures of everyday and scientific thinking. Journal of Research in Science Teaching, 24, 291–307. doi:10.1002/tea.3660240404.

    Article  Google Scholar 

  • Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99–107. doi:10.1080/00461520701263368.

    Article  Google Scholar 

  • Hofer, B. K. (2006). Domain specificity of personal epistemology: Resolved questions, persistent issues, new models. International Journal of Educational Research, 45(1–2), 85–95. doi:10.1016/j.ijer.2006.08.006.

    Article  Google Scholar 

  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about knowledge and knowing and their relation to learning. Review of Educational Research, 67, 88–140. doi:10.3102/00346543067001088.

    Article  Google Scholar 

  • Hung, W. (2011). Theory to reality: a few issues in implementing problem-based learning. Educational Technology Research and Development, 59(4), 529–552. doi:10.1007/s11423-011-9198-1.

    Article  Google Scholar 

  • Ikuenobe, P. (2001). Questioning as an epistemic process of critical thinking. Educational Philosophy and Theory, 33(3–4), 325–341. doi:10.1111/j.1469-5812.2001.tb00274.x.

    Article  Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85. doi:10.1007/BF02300500.

    Article  Google Scholar 

  • Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York, NY: Routledge.

    Google Scholar 

  • Jonassen, D. H., & Kim, B. (2010). Arguing to learn and learning to argue: Design justifications and guidelines. Educational Technology Research and Development, 58(4), 439–457. doi:10.1007/s11423-009-9143-8.

    Article  Google Scholar 

  • Khishfe, R. (2014). Explicit nature of science and argumentation instruction in the context of socioscientific issues: An effect on student learning and transfer. International Journal of Science Education, 36(6), 974–1016. doi:10.1080/09500693.2013.832004.

    Article  Google Scholar 

  • Kienhues, D., Stadtler, M., & Bromme, R. (2011). Dealing with conflicting or consistent medical information on the web: When expert information breeds laypersons’ doubts about experts. Learning and Instruction, 21(2), 193–204. doi:10.1016/j.learninstruc.2010.02.004.

    Article  Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310. doi:10.1002/sce.1011.

    Article  Google Scholar 

  • Kuhn, D. (2015). Thinking together and alone. Educational Researcher, 44(1), 46–53. doi:10.3102/0013189X15569530.

    Article  Google Scholar 

  • Kuhn, D., & Udell, W. (2007). Coordinating own and other perspectives in argument. Thinking & Reasoning, 13(2), 90–104. doi:10.1080/13546780600625447.

    Article  Google Scholar 

  • Kuhn, D., Wang, Y., & Li, H. (2010). Why argue? Developing understanding of the purposes and values of argumentive discourse. Discourse Processes, 48(1), 26–49. doi:10.1080/01638531003653344.

    Article  Google Scholar 

  • Kuhn, D., Zillmer, N., Crowell, A., & Zavala, J. (2013). Developing norms of argumentation: Metacognitive, epistemological, and social dimensions of developing argumentive competence. Cognition and Instruction, 31(4), 456–496. doi:10.1080/07370008.2013.830618.

    Article  Google Scholar 

  • Kyza, E. A. (2009). Middle-school students’ reasoning about alternative hypotheses in a scaffolded, software-based inquiry investigation. Cognition and Instruction, 27, 277–311. doi:10.1080/07370000903221718.

    Article  Google Scholar 

  • Lähteenmäki, M.-L. (2005). Reflectivity in supervised practice: Conventional and transformative approaches to physiotherapy. Learning in Health and Social Care, 4(1), 18–28. doi:10.1111/j.1473-6861.2005.00080.x.

    Article  Google Scholar 

  • Lee, H., Chang, H., Choi, K., Kim, S.-W., & Zeidler, D. L. (2012). Developing character and values for global citizens: Analysis of pre-service science teachers’ moral reasoning on socioscientific issues. International Journal of Science Education, 34, 925–953. doi:10.1080/09500693.2011.625505.

    Article  Google Scholar 

  • Lee, Y. C., & Grace, M. (2010). Students’ reasoning processes in making decisions about an authentic, local socio-scientific issue: Bat conservation. Journal of Biological Education, 44(4), 156–165. doi:10.1080/00219266.2010.9656216.

    Article  Google Scholar 

  • Leont’ev, A. N. (1974). The problem of activity in psychology. Soviet Psychology, 13(2), 4–33. doi:10.2753/RPO1061-040513024.

    Google Scholar 

  • Limón, M. (2006). The domain generality-specificity of epistemological beliefs: A theoretical problem, a methodological problem or both? International Journal of Educational Research, 45(1–2), 7–27. doi:10.1016/j.ijer.2006.08.002.

    Article  Google Scholar 

  • Loyens, S. M. M., Magda, J., & Rikers, R. M. J. P. (2008). Self-directed learning in problem-based learning and its relationships with self-regulated learning. Educational Psychology Review, 20, 411–427. doi:10.1007/s10648-008-9082-7.

    Article  Google Scholar 

  • Luria, A. R. (1976). Cognitive development: Its cultural and social foundations. (M. Cole, Ed., M. Lopez-Morillas & L. Solotaroff, Trans.). Cambridge, MA: Harvard University Press.

  • Mahardale, J. W., & Lee, C. B. (2013). Understanding how social and epistemic scripts perpetuate intersubjectivity through patterns of interactions. Interactive Learning Environments, 21, 68–88. doi:10.1080/10494820.2010.547204.

    Article  Google Scholar 

  • Mason, L., Ariasi, N., & Boldrin, A. (2011). Epistemic beliefs in action: Spontaneous reflections about knowledge and knowing during online information searching and their influence on learning. Learning and Instruction, 21(1), 137–151. doi:10.1016/j.learninstruc.2010.01.001.

    Article  Google Scholar 

  • Mason, L., Boldrin, A., & Zurlo, G. (2006). Epistemological understanding in different judgment domains: Relationships with gender, grade level, and curriculum. International Journal of Educational Research, 45(1–2), 43–56. doi:10.1016/j.ijer.2006.08.003.

    Article  Google Scholar 

  • Mason, L., & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16, 492–509. doi:10.1016/j.learninstruc.2006.09.007.

    Article  Google Scholar 

  • McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learning Sciences, 18, 416–460. doi:10.1080/10508400903013488.

    Article  Google Scholar 

  • Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation (4th ed.). San Francisco, CA: Jossey-Bass.

    Google Scholar 

  • Miles, M. B., Huberman, A. M., & Saldaña, J. (2013). Qualitative data analysis: A methods sourcebook. Los Angeles, CA: SAGE.

    Google Scholar 

  • Morse, J. M. (2015). Critical analysis of strategies for determining rigor in qualitative inquiry. Qualitative Health Research, 25(9), 1212–1222. doi:10.1177/1049732315588501.

    Article  Google Scholar 

  • Muis, K. R. (2007). The role of epistemic beliefs in self-regulated learning. Educational Psychologist, 42, 173–190. doi:10.1080/00461520701416306.

    Article  Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students’ assessment of the credibility of evidence. Journal of Research in Science Teaching, 48, 711–744. doi:10.1002/tea.20420.

    Article  Google Scholar 

  • Nippold, M. A., & Ward-Lonergan, J. M. (2010). Argumentative writing in pre-adolescents: The role of verbal reasoning. Child Language Teaching and Therapy, 26(3), 238–248. doi:10.1177/0265659009349979.

    Article  Google Scholar 

  • Nussbaum, E. M., Sinatra, G. M., & Poliquin, A. (2008). Role of epistemic beliefs and scientific argumentation in science learning. International Journal of Science Education, 30, 1977–1999. doi:10.1080/09500690701545919.

    Article  Google Scholar 

  • Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463–466. doi:10.1126/science.1183944.

    Article  Google Scholar 

  • Osborne, J., Simon, S., Christodoulou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: A study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315–347. doi:10.1002/tea.21073.

    Article  Google Scholar 

  • Papadouris, N., & Constantinou, C. P. (2014). An exploratory investigation of 12-year-old students’ ability to appreciate certain aspects of the nature of science through a specially designed approach in the context of energy. International Journal of Science Education, 36(5), 755–782. doi:10.1080/09500693.2013.827816.

    Article  Google Scholar 

  • Perelman, C., & Olbrechts-Tyteca, L. (1958). La nouvelle rhétorique: Traité de l’argumentation [The new rhetoric: Treatise on argumentation]. Paris: Presses Universitaires de France.

    Google Scholar 

  • Puntambekar, S., & Kolodner, J. L. (2005). Toward implementing distributed scaffolding: Helping students learn science from design. Journal of Research in Science Teaching, 42, 185–217. doi:10.1002/tea.20048.

    Article  Google Scholar 

  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13, 273–304. doi:10.1207/s15327809jls1303_2.

    Article  Google Scholar 

  • Richter, T., & Schmid, S. (2010). Epistemological beliefs and epistemic strategies in self-regulated learning. Metacognition & Learning, 5(1), 47–65. doi:10.1007/s11409-009-9038-4.

    Article  Google Scholar 

  • Ryu, S., & Sandoval, W. A. (2012). Improvements to elementary children’s epistemic understanding from sustained argumentation. Science Education, 96(3), 488–526. doi:10.1002/sce.21006.

    Article  Google Scholar 

  • Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371–391. doi:10.1007/s11165-006-9030-9.

    Article  Google Scholar 

  • Sahin, M. (2009). Correlations of students’ grades, expectations, epistemelogical beliefs, and demographics in a problem-based introductory physics course. International Journal of Environmental and Science Education, 4(2), 169–184.

    Google Scholar 

  • Salomon, G., Perkins, D. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2–9. doi:10.3102/0013189X020003002.

    Article  Google Scholar 

  • Sandoval, W. A. (2005). Understanding students’ practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634–656. doi:10.1002/sce.20065.

    Article  Google Scholar 

  • Savery, J. (2006). Overview of problem-based learning: Definitions and distinctions. Interdisciplinary Journal of Problem-Based Learning, 1(1), 9–20. doi:10.7771/1541-5015.1002.

    Article  Google Scholar 

  • Schmidt, H. G., Rotgans, J. I., & Yew, E. H. (2011). The process of problem-based learning: what works and why. Medical Education, 45(8), 792–806. doi:10.1111/j.1365-2923.2011.04035.x.

    Article  Google Scholar 

  • Strømsø, H. I., & Bråten, I. (2010). The role of personal epistemology in the self-regulation of internet-based learning. Metacognition and Learning, 5, 91–111. doi:10.1007/s11409-009-9043-7.

    Article  Google Scholar 

  • Strømsø, H. I., Bråten, I., & Britt, M. A. (2011). Do students’ beliefs about knowledge and knowing predict their judgement of texts’ trustworthiness? Educational Psychology, 31(2), 177–206. doi:10.1080/01443410.2010.538039.

    Article  Google Scholar 

  • Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13, 305–335. doi:10.1207/s15327809jls1303_3.

    Article  Google Scholar 

  • Tal, T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students’ performances. Cultural Studies of Science Education, 1(4), 615–644. doi:10.1007/s11422-006-9026-9.

    Article  Google Scholar 

  • ten Have, P. (2007). Doing conversation analysis. London, UK: SAGE Publications, Ltd. Retrieved from http://srmo.sagepub.com/view/doing-conversation-analysis/SAGE.xml

  • Tracy, S. J. (2010). Qualitative quality: Eight “big-tent” criteria for excellent qualitative research. Qualitative Inquiry, 16(10), 837–851. doi:10.1177/1077800410383121.

    Article  Google Scholar 

  • Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment. Journal of Education for Students Placed at Risk (JESPAR), 12(3), 243–270. doi:10.1080/10824660701601266.

    Article  Google Scholar 

  • van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22, 271–296. doi:10.1007/s10648-010-9127-6.

    Article  Google Scholar 

  • van Eemeren, F. H., Garssen, B., Krabbe, E. C. W., Henkemans, A. F. S., Verheij, B., & Wagemans, J. H. M. (2014). The pragma-dialectical theory of argumentation. In: Handbook of Argumentation Theory (pp. 517–613). Dordrecht, The Netherlands: Springer. Retrieved from http://link.springer.com/referenceworkentry/ 10.1007/978-90-481-9473-5_10

  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46, 197–221. doi:10.1080/00461520.2011.611369.

    Article  Google Scholar 

  • Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Walker, A. E., Belland, B. R., Kim, N., Lefler, M., Whitney, B., & Andreassen, L. (2016). Using Bayesian network meta-analysis to synthesize research on computer-based scaffolding in STEM education. Presented at the Annual Meeting of the American Educational Research Association, Washington, DC.

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Yin, R. K. (2013). Validity and generalization in future case study evaluations. Evaluation, 19(3), 321–332. doi:10.1177/1356389013497081.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Early CAREER Grant 0953046 from the National Science Foundation. Any views, findings, or opinions are those of the authors and do not necessarily represent official positions of NSF.

Funding

This study was funded by the National Science Foundation (Grant 0953046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Belland.

Ethics declarations

Compliance with ethical standards

This study was reviewed and approved by the Utah State University Institutional Review Board and participating school district officials. Consent was obtained from parents of participating students, and participating students themselves assented.

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belland, B.R., Gu, J., Kim, N.J. et al. An ethnomethodological perspective on how middle school students addressed a water quality problem. Education Tech Research Dev 64, 1135–1161 (2016). https://doi.org/10.1007/s11423-016-9451-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11423-016-9451-8

Keywords

Navigation