Skip to main content
Log in

Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Cathinone-derived designer drugs have recently grown to be popular as drugs of abuse. 3,4-Dimethylmethcathinone (DMMC) has recently been abused as one of the alternatives to controlled cathinones. In the present study, DMMC and its major metabolites, 3,4-dimethylcathinone (DMC), 1-(3,4-dimethylphenyl)-2-methylaminopropan-1-ol (β-OH-DMMC, diastereomers), and 2-amino-1-(3,4-dimethylphenyl)propan-1-ol (β-OH-DMC, diastereomers), have been identified and quantified in a DMMC user’s urine by gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry using newly synthesized authentic standards. Other putative metabolites including oxidative metabolites of the xylyl group and conjugated metabolites have also been detected in urine. The identified and putative phase I metabolites indicated that the metabolic pathways of DMMC include its reduction of the ketone group to the corresponding alcohols, N-demethylation to the primary amine, oxidation of the xylyl group to the corresponding alcohol and carboxylate forms, and combination of these steps. Concentrations of the identified metabolites were found to increase slightly after enzymatic hydrolysis, suggesting that these compounds are partially metabolized to the respective conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jane MP, Lewis SN (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8:33–42

    Article  Google Scholar 

  2. Ammann D, McLaren JM, Gerostamoulos D, Beyer J (2012) Detection and quantification of new designer drugs in human blood: part 2—designer cathinones. J Anal Toxicol 36:381–389

    Article  PubMed  CAS  Google Scholar 

  3. Karila L, Petit A, Cottencin O, Coscas S, Reynaud M (2012) Synthetic drugs: the new low-cost landscape of drugs. Rev Prat 62:664–666

    PubMed  Google Scholar 

  4. Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46:436–441

    Article  PubMed  Google Scholar 

  5. Namera A, Nakamoto A, Saito T, Nagao M (2011) Colorimetric detection and chromatographic analyses of designer drugs in biological materials: a comprehensive review. Forensic Toxicol 29:1–24

    Article  CAS  Google Scholar 

  6. Locos O, Reynolds D (2012) The characterization of 3,4-dimethylmethcathinone (3,4-DMMC). J Forensic Sci. doi:10.1111/j.1556-4029.2012.02142.x

    PubMed  Google Scholar 

  7. James D, Adams RD, Spears R, Spears R, Cooper G, Lupton DJ, Thompson JP, Thomas SH (2011) Clinical characteristics of mephedrone toxicity reported to the UK National Poisons Information Service. Emerg Med J 28:686–689

    Article  PubMed  CAS  Google Scholar 

  8. Winstock AR, Mitcheson LR, Deluca P, Davey Z, Corazza O, Schifano F (2011) Mephedrone, new kid for the chop? Addiction 106:154–161

    Article  PubMed  Google Scholar 

  9. Winstock AR, Mitcheson LR, Marsden J (2010) Mephedrone: still available and twice the price. Lancet 376:1537

    Article  PubMed  Google Scholar 

  10. Carhart-Harris RL, King LA, Nutt DJ (2011) A web-based survey on mephedrone. Drug Alcohol Depend 118:19–22

    Article  PubMed  CAS  Google Scholar 

  11. Sogawa C, Sogawa N, Ohyama K, Kikura-Hanajiri R, Goda Y, Sora I, Kitayama S (2011) Methylone and monoamine transporters: correlation with toxicity. Curr Neuropharmacol 9:58–62

    Article  PubMed  CAS  Google Scholar 

  12. Cozzi NV, Sievert MK, Shulgin AT, Jacob P 3rd, Ruoho AE (1999) Inhibition of plasma membrane monoamine transporters by beta-ketoamphetamines. Eur J Pharmacol 381:63–69

    Article  PubMed  CAS  Google Scholar 

  13. Servin A, Fauquet JP, Jacquot C, Rapin JR (1978) Effects of pyrovalerone on peripheral noradrenergic mechanisms. Biochem Pharmacol 27:1693–1694

    Article  PubMed  CAS  Google Scholar 

  14. Bonnet JJ, Protais P, Chagraoui A, Costentin J (1986) High-affinity [3H]GBR 12783 binding to a specific site associated with the neuronal dopamine uptake complex in the central nervous system. Eur J Pharmacol 126:211–222

    Article  PubMed  CAS  Google Scholar 

  15. Vaugeois JM, Bonnet JJ, Costentin J (1992) In vivo labelling of the neuronal dopamine uptake complex in the mouse striatum by [3H]GBR 12783. Eur J Pharmacol 210:77–84

    Article  PubMed  CAS  Google Scholar 

  16. Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared to MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol. doi:10.1111/j.1476-5381.2011.01499.x

  17. Gregory CH, Katy MW, Lisa MM, Pei WC, Jonathan DE, Scott CA, David MA, Paula LVB, Christopher LG, Kevin MC, Amanda JH, James WG, Diana GW, Glen RH, Annette EF (2011) 4-Methylmethcathinone (mephedrone): Neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther. doi:10.1124/jpet.111.184119

  18. Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  PubMed  CAS  Google Scholar 

  19. Zaitsu K, Katagi M, Tatsuno M, Sato T, Tsuchihashi H, Suzuki K (2011) Recently abused β-keto derivates of 3,4-methylenedioxyphenylalkylamines: a review of their metabolisms and toxciological analysis. Forensic Toxicol 29:73–84

    Google Scholar 

  20. Zaitsu K, Katagi M, Kamata HT, Kamata T, Shima N, Miki A, Tsuchihashi H, Mori Y (2009) Determination of the metabolites of the new designer drugs bk-MBDB and bk-MDEA in human urine. Forensic Sci Int 188:131–139

    Article  PubMed  CAS  Google Scholar 

  21. Kamata HT, Shima N, Zaitsu K, Kamata T, Miki A, Nishikawa M, Katagi M, Tsuchihashi H (2006) Metabolism of the recently encountered designer drug, methylone, in humans and rats. Xenobiotica 36:709–723

    Article  PubMed  CAS  Google Scholar 

  22. Kamata HT, Shima N, Zaitsu K, Kamata T, Nishikawa M, Katagi M, Miki A, Tsuchihashi H (2007) Simultaneous analysis of new designer drug, methylone, and its metabolites in urine by gas chromatography-mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry. Jpn J Forensic Sci Tech 12:97–106

    Article  Google Scholar 

  23. Meyer MR, Wilhelm J, Peters FT, Maurer HH (2010) Beta-keto amphetamines: studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography-mass spectrometry. Anal Bioanal Chem 397:1225–1233

    Article  PubMed  CAS  Google Scholar 

  24. Strano-Rossi S, Cadwallader AB, de la Torre X, Botrè F (2010) Toxicological determination and in vitro metabolism of the designer drug methylenedioxypyrovalerone (MDPV) by gas chromatography/mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 24:2706–2714

    Article  PubMed  CAS  Google Scholar 

  25. Meyer MR, Du P, Schuster F, Maurer HH (2010) Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC–MS and LC–high resolution MS and its detectability in urine by GC–MS. J Mass Spectrom 45:1426–1442

    Article  PubMed  CAS  Google Scholar 

  26. Springer D, Fritschi G, Maurer HH (2003) Metabolism of the new designer drug α-pyrrolidinopropiophenone (PPP) and the toxicological detection of PPP and 4′-methyl-α-pyrrolidinopropiophenone (MPPP) studied in rat urine using gas chromatography-mass spectrometry. J Chromatogr B 796:253–266

    Article  CAS  Google Scholar 

  27. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug α-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 44:952–964

    Article  PubMed  CAS  Google Scholar 

  28. Meyer MR, Vollmar C, Schwaninger AE, Wolf EU, Maurer HH (2012) New cathinone-derived designer drugs 3-bromomethcathinone and 3-fluoromethcathinone: studies on their metabolism in rat urine and human liver microsomes using GC–MS and LC–high resolution MS and their detectability in urine. J Mass Spectrom 47:253–262

    Article  PubMed  CAS  Google Scholar 

  29. Mueller DM, Rentsch KM (2012) Generation of metabolites by an automated online metabolism method using human liver microsomes with subsequent identification by LC–MS(n), and metabolism of 11 cathinones. Anal Bioanal Chem 402:2141–2151

    Article  PubMed  CAS  Google Scholar 

  30. Pawlik E, Plässer G, Mahler H, Daldrup T (2011) Studies on the phase I metabolism of the new designer drug 3-fluoromethcathinone using rabbit liver slices. Int J Legal Med. doi:10.1007/s00414-011-0601-6

  31. Archer RP (2009) Fluoromethcathinone, a new substance of abuse. Forensic Sci Int 185:10–20

    Article  PubMed  CAS  Google Scholar 

  32. Pizarro N, de la Torre R, Farré M, Segura J, Llebaria A, Joglar J (2002) Synthesis and capillary electrophoretic analysis of enantiomerically enriched reference standards of MDMA and its main metabolites. Bioorg Med Chem 10:1085–1092

    Article  PubMed  CAS  Google Scholar 

  33. Morita M, Ando H (1983) Analysis of methamphetamine and its metabolites in urine from a habitual user of the stimulant. Eisei Kagaku 29:318–322 (in Japanese)

    Article  CAS  Google Scholar 

  34. Brenneisen R, Geisshüsler S, Schorno X (1986) Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J Pharm Pharmacol 38:298–300

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shima, N., Katagi, M., Kamata, H. et al. Urinary excretion and metabolism of the newly encountered designer drug 3,4-dimethylmethcathinone in humans. Forensic Toxicol 31, 101–112 (2013). https://doi.org/10.1007/s11419-012-0172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-012-0172-3

Keywords

Navigation