Skip to main content

Advertisement

Log in

Anti-dormant mycobacterial activity and target molecule of melophlins, tetramic acid derivatives isolated from a marine sponge of Melophlus sp.

  • Original Paper
  • Biologically Active Natural Products from Microorganisms and Plants
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis infection, is a major world health problem that is responsible for the deaths of 1.5 million people each year. In addition, the requirement for long-term therapy to cure TB complicates treatment of the disease. One of the major reasons for the extended chemotherapeutic regimens and wide epidemicity of TB is that M. tuberculosis has the ability to persist in a dormant state. We therefore established a new screening system to search for substances with activity against dormant mycobacteria using M. smegmatis and M. bovis BCG cultivated in medium containing propionate as sole carbon source to induce dormancy. Subsequently, melophlins A (1), G (2), H (3), and I (4), tetramic acid derivatives, were re-discovered from the Indonesian marine sponge of Melophlus sp. as anti-dormant mycobacterial substances. Moreover, target analysis of melophlin A indicated that it targeted the BCG1083 protein of putative exopolyphosphatase and the BCG1321c protein of diadenosine 5′,5‴-P1,P4-tetraphosphate phosphorylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Idemyor V (2007) HIV and tuberculosis coinfection: inextricably linked liaison. J Natl Med Assoc 99:1414–1419

    PubMed  PubMed Central  Google Scholar 

  2. Global Tuberculosis report 2015 World Health Organization: Geneva, Switzerland. http://www.who.int/tb/publications/global_report/en/. Accessed on 15 Feb 2016

  3. Arai M, Sobou M, Vilcheze C, Baughn A, Hashizume H, Pruksakorn P, Ishida S, Matsumoto M, Jacobs WR Jr, Kobayashi M (2008) Halicyclamine A, a marine spongean alkaloid as a lead for anti-tuberculosis agent. Bioorg Med Chem 16:6732–6736

    Article  CAS  PubMed  Google Scholar 

  4. Arai M, Ishida S, Setiawan A, Kobayashi M (2009) Haliclonacyclamines, tetracyclic alkylpiperidine alkaloids, as anti-dormant mycobacterial substances from a marine sponge of Haliclona sp. Chem Pharm Bull 57:1136–1138

    Article  CAS  PubMed  Google Scholar 

  5. Pruksakorn P, Arai M, Kotoku N, Vilcheze C, Baughn AD, Moodley P, Jacobs WR Jr, Kobayashi M (2010) Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg Med Chem Lett 20:3658–3663

    Article  CAS  PubMed  Google Scholar 

  6. Yamano Y, Arai M, Kobayashi M (2012) Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp. Bioorg Med Chem Lett 22:4877–4881

    Article  CAS  PubMed  Google Scholar 

  7. Arai M, Han C, Yamano Y, Setiawan A, Kobayashi M (2014) Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. J Nat Med 68:372–376

    Article  CAS  PubMed  Google Scholar 

  8. Arai M, Yamano Y, Setiawan A, Kobayashi M (2014) Identification of the target protein of agelasine D, a marine sponge diterpene alkaloid, as an anti-dormant mycobacterial substance. ChemBioChem 15:117–123

    Article  CAS  PubMed  Google Scholar 

  9. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McKinney JD, Bentrup KH, Muñoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG (2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738

    Article  CAS  PubMed  Google Scholar 

  11. Muñoz-Elías EJ, Upton AM, Cherian J, McKinney JD (2006) Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122

    Article  PubMed  Google Scholar 

  12. Aoki S, Higuchi K, Ye Y, Satari R, Kobayashi M (2000) Melophlins A and B, novel tetramic acids reversing the phenotype of ras-transformed cells, from the marine sponge Melophlus sarassinorum. Tetrahedron 56:1833–1836

    Article  CAS  Google Scholar 

  13. Wang CY, Wang BG, Wiryowidagdo S, Wray V, Soest RV, Steube KG, Guan HS, Proksch P, Ebel R (2003) Melophlins C-O, thirteen novel tetramic acids from the marine sponge Melophlus sarassinorum. J Nat Prod 66:51–56

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Hasegawa M, Harada K, Kobayashi H, Nagai H, Namikoshi M (2006) Melophlins P, Q, R, and S: four new tetramic acid derivatives, from two Palauan marine sponges of the genus Melophlus. Chem Pharm Bull 54:852–854

    Article  CAS  PubMed  Google Scholar 

  15. Knoth T, Warburg K, Katzka C, Rai A, Wolf A, Brockmeyer A, Janning P, Ruebold TF, Eschenburg S, Manstein DJ, Hübel K, Kaiser M, Waldmann H (2009) The ras pathway modulator melophlin A targets dynamins. Angew Chem Int Ed 48:7240–7245

    Article  CAS  Google Scholar 

  16. Arai M, Liu L, Fujimoto T, Setiawan A, Kobayashi M (2011) DedA protein relates to action-mechanism of halicyclamine A, a marine spongean macrocyclic alkaloid, as an anti-dormant mycobacterial substance. Mar Drugs 9:984–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pruksakorn P, Arai M, Liu L, Moodley P, Jacobs WR Jr, Kobayashi M (2011) Action-mechanism of trichoderin A, an anti-dormant mycobacterial aminolipopeptide from marine sponge-derived Trichoderma sp. Biol Pharm Bull 34:1287–1290

    Article  CAS  PubMed  Google Scholar 

  18. Balasubramanian V, Pavelka MS Jr, Bardarov SS, Martin J, Weisbrod TR, McAdam RA, Bloom BR, Jacobs WR Jr (1996) Allelic exchange in Mycobacterium tuberculosis with long linear recombination substrates. J Bacteriol 178:273–279

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wayne LG, Sohaskey CD (2001) Nonreplicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163

    Article  CAS  PubMed  Google Scholar 

  20. Lim A, Eleuterio M, Hutter B, Murugasu-Oei B, Dick T (1999) Oxygen depletion-induced dormancy in Mycobacterium bovis BCG. J Bacteriol 181:2252–2256

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dick T, Lee BH, Murugasu-Oei B (1998) Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 163:159–164

    Article  CAS  PubMed  Google Scholar 

  22. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84

    Article  CAS  PubMed  Google Scholar 

  24. Chuang YM, Bandyopadhyay N, Rifat D, Rubin H, Bader JS, Karakousis PC (2015) Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. mBio 6:e02428

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brenner C (2002) Hint, Fhit, and GalT: function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 41:9003–9014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mori S, Shibayama K, Wachino J, Arakawa Y (2010) Purification and molecular characterization of a novel diadenosine 5′,5‴-P1,P4-tetraphosphate phosphorylase from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 69:99–105

    Article  CAS  PubMed  Google Scholar 

  27. Farr SB, Arnosti DN, Chamberlin MJ, Ames BN (1989) An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Proc Natl Acad Sci USA 86:5010–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ismail TM, Hart CA, McLennan AG (2003) Regulation of dinucleoside polyphosphate pools by the YgdP and ApaH hydrolases is essential for the ability of Salmonella enterica serovar Typhimurium to invade cultured mammalian cells. J Biol Chem 278:32602–32607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Drs. William R. Jacobs, Jr. and Catherine Vilchèze (Albert Einstein College of Medicine, New York, USA) for kindly providing the M. smegmatis mc2155 and M. bovis BCG Pasteur strains, and the pMV206, pMV261, and pYUB415 vectors, and for their support for the genomic DNA library. This study was financially supported by the Hoansha Foundation, the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Agency for Medical Research and Development (AMED), the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (JSPS) (15H03114, 26305002, and 24310159), and the Grant-in-Aid for Scientific Research on Innovative Areas from MEXT (23102005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masayoshi Arai or Motomasa Kobayashi.

Additional information

This article is dedicated to Professor Satoshi Ōmura in celebration of his 2015 Nobel Prize.

M. Arai and Y. Yamano contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, M., Yamano, Y., Kamiya, K. et al. Anti-dormant mycobacterial activity and target molecule of melophlins, tetramic acid derivatives isolated from a marine sponge of Melophlus sp.. J Nat Med 70, 467–475 (2016). https://doi.org/10.1007/s11418-016-1005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-016-1005-1

Keywords

Navigation