Skip to main content
Log in

The renoprotective effect of shichimotsukokato on hypertension-induced renal dysfunction in spontaneously hypertensive rats

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Antihypertensive treatment is highly important to prevent the progression of chronic kidney disease. Shichimotsukokato (SKT), a traditional Japanese medicine (i.e., Kampo formula), lowered systolic blood pressure (SBP) in experimental animal models of hypertension. However, its mechanism of action has not been fully elucidated. We investigated the potential renoprotective mechanism of SKT in spontaneously hypertensive rats (SHRs). Ten-week-old SHRs were randomly divided into four groups (six rats per group). In the SHR control group, the SBP increased remarkably during the 8-week experimental period. In the SHRs, SKT extract administered orally at a daily dose of 0.45 or 0.15 g/kg significantly suppressed the increase in SBP to the same extent as telmisartan administered orally at a daily dose of 0.01 g/kg. At the end of the experiment, blood, urine, and kidney cortex tissue samples were examined. The SKT treatment significantly decreased urinary albumin excretion to nearly the same level as the telmisartan treatment. A notable loss of chloride channel 5 (ClC-5), a chloride channel in the proximal renal tubules, occurred in the SHR control group. Thus, we concluded that SKT administration significantly ameliorated this decrease. The mechanism of SKT in reducing urinary albumin excretion is mediated, at least partly, by prevention of the loss of ClC-5 in the renal cortex of SHRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE (2014) Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis 7:75–88

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter N, Mogensen CE, Cooper M, Marre M, Williams B, Hamet P, Mancia G, Woodward M, Macmahon S, Chalmers J; ADVANCE Collaborative Group (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20:1813–1821

    Article  PubMed Central  PubMed  Google Scholar 

  3. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J; Chronic Kidney Disease Prognosis Consortium (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80:93–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Lambers Heerspink HJ, Brinkman JW, Bakker SJ, Gansevoort RT, de Zeeuw D (2006) Update on microalbuminuria as a biomarker in renal and cardiovascular disease. Curr Opin Nephrol Hypertens 15:631–636

    Article  PubMed  Google Scholar 

  5. Deen WM, Lazzara MJ, Myers BD (2001) Structural determinants of glomerular permeability. Am J Physiol Renal Physiol 281:F579–F596

    CAS  PubMed  Google Scholar 

  6. Haraldsson B, Jeansson M (2009) Glomerular filtration barrier. Curr Opin Nephrol Hypertens 18:331–335

    Article  PubMed  Google Scholar 

  7. Mathieson PW (2004) The cellular basis of albuminuria. Clin Sci (Lond) 107:533–538

    Article  CAS  Google Scholar 

  8. Miner JH (2011) Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol 26:1413–1417

    Article  PubMed Central  PubMed  Google Scholar 

  9. Wickman L, Afshinnia F, Wang SQ, Yang Y, Wang F, Chowdhury M, Graham D, Hawkins J, Nishizono R, Tanzer M, Wiggins J, Escobar GA, Rovin B, Song P, Gipson D, Kershaw D, Wiggins RC (2013) Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J Am Soc Nephrol 24:2081–2095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Patrakka J, Tryggvason K (2007) Nephrin—a unique structural and signaling protein of the kidney filter. Trends Mol Med 13:396–403

    Article  CAS  PubMed  Google Scholar 

  11. Pätäri-Sampo A, Ihalmo P, Holthöfer H (2006) Molecular basis of the glomerular filtration: nephrin and the emerging protein complex at the podocyte slit diaphragm. Ann Med 38:483–492

    Article  PubMed  Google Scholar 

  12. Roselli S, Gribouval O, Boute N, Sich M, Benessy F, Attié T, Gubler MC, Antignac C (2002) Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol 160:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gekle M (2005) Renal tubule albumin transport. Annu Rev Physiol 67:573–594

    Article  CAS  PubMed  Google Scholar 

  14. Park CH, Maack T (1984) Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J Clin Invest 73:767–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI (2000) Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 105:1353–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Christensen EI, Birn H (2001) Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 280:F562–F573

    CAS  PubMed  Google Scholar 

  17. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257

    Article  CAS  PubMed  Google Scholar 

  18. Piwon N, Günther W, Schwake M, Bösl MR, Jentsch TJ (2000) ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  CAS  PubMed  Google Scholar 

  19. Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945

    Article  CAS  PubMed  Google Scholar 

  20. Hiwara N, Uehara Y, Takada S, Kawabata Y, Ohshima N, Nagata T, Ishimitsu T, Gomi T, Goto A, Ikeda T, Yagi S, Omata M (1994) Antihypertensive property and renal protection by shichimotsu-koka-to extract in salt-induced hypertension in Dahl strain rats. Am J Chin Med 22:51–62

    Article  CAS  PubMed  Google Scholar 

  21. Bai F, Makino T, Ono T, Mizukami H (2012) Anti-hypertensive effects of shichimotsukokato in 5/6 nephrectomized Wistar rats mediated by the DDAH–ADMA–NO pathway. J Nat Med 66:583–590

    Article  PubMed  Google Scholar 

  22. Ono T, Kamikado K, Morimoto T (2013) Protective effects of Shichimotsu-koka-To on irreversible Thy-1 nephritis. Biol Pharm Bull 36:41–47

    Article  CAS  PubMed  Google Scholar 

  23. Nakagami H, Kiomy Osako M, Nakagami F, Shimosato T, Minobe N, Moritani T, Shimamura M, Miyake T, Shimizu H, Takeya Y, Morishita R (2010) Prevention and regression of non-alcoholic steatohepatitis (NASH) in a rat model by metabosartan, telmisartan. Int J Mol Med 26:477–481

    CAS  PubMed  Google Scholar 

  24. Deguchi K, Kurata T, Fukui Y, Liu W, Yun Z, Omote Y, Sato K, Kono S, Hishikawa N, Yamashita T, Abe K (2014) Long-term amelioration of telmisartan on metabolic syndrome-related molecules in stroke-resistant spontaneously hypertensive rat after transient middle cerebral artery occlusion. J Stroke Cerebrovasc Dis 23:2646–2653

    Article  PubMed  Google Scholar 

  25. The Society of Japanese Pharmacopoeia (2012) The Japanese pharmacopoeia sixteenth edition (JP XVI). Yakuji-Nippo, Tokyo

    Google Scholar 

  26. Kimura M, Shibahara N, Hikiami H, Yoshida T, Jo M, Kaneko M, Nogami T, Fujimoto M, Goto H, Shimada Y (2011) Traditional Japanese formula kigikenchuto accelerates healing of pressure-loading skin ulcer in rats. Evid Based Complement Altern Med 2011:592791

    Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  28. Nakai Y, Kido T, Hashimoto K, Kase Y, Sakakibara I, Higuchi M, Sasaki H (2003) Effect of the rhizomes of Atractylodes lancea and its constituents on the delay of gastric emptying. J Ethnopharmacol 84:51–55

    Article  PubMed  Google Scholar 

  29. Yanagi Y, Yasuda M, Hashida K, Kadokura Y, Yamamoto T, Suzaki H (2008) Mechanism of salivary secretion enhancement by Byakkokaninjinto. Biol Pharm Bull 31:431–435

    Article  CAS  PubMed  Google Scholar 

  30. Hultström M (2012) Development of structural kidney damage in spontaneously hypertensive rats. J Hypertens 30:1087–1091

    Article  PubMed  Google Scholar 

  31. Pavenstädt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    Article  PubMed  Google Scholar 

  32. Huber TB, Benzing T (2005) The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 14:211–216

    Article  PubMed  Google Scholar 

  33. Chen HM, Liu ZH, Zeng CH, Li SJ, Wang QW, Li LS (2006) Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 48:772–779

    Article  PubMed  Google Scholar 

  34. Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z (2001) Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia 44:874–877

    Article  CAS  PubMed  Google Scholar 

  35. Nakhoul F, Ramadan R, Khankin E, Yaccob A, Kositch Z, Lewin M, Assady S, Abassi Z (2005) Glomerular abundance of nephrin and podocin in experimental nephrotic syndrome: different effects of antiproteinuric therapies. Am J Physiol Renal Physiol 289:F880–F890

    Article  CAS  PubMed  Google Scholar 

  36. Inoue BH, Arruda-Junior DF, Campos LC, Barreto AL, Rodrigues MV, Krieger JE, Girardi AC (2013) Progression of microalbuminuria in SHR is associated with lower expression of critical components of the apical endocytic machinery in the renal proximal tubule. Am J Physiol Renal Physiol 305:F216–F226

    Article  CAS  PubMed  Google Scholar 

  37. Kawachi H, Suzuki K, Miyauchi N, Hashimoto T, Otaki Y, Shimizu F (2009) Slit diaphragm dysfunction in proteinuric states: identification of novel therapeutic targets for nephrotic syndrome. Clin Exp Nephrol 13:275–280

    Article  CAS  PubMed  Google Scholar 

  38. Fogo A, Breyer JA, Smith MC, Cleveland WH, Agodoa L, Kirk KA, Glassock R (1997) Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int 51:244–252

    Article  CAS  PubMed  Google Scholar 

  39. Norris K, Bourgoigne J, Gassman J, Hebert L, Middleton J, Phillips RA, Randall O, Rostand S, Sherer S, Toto RD, Wright JT Jr, Wang X, Greene T, Appel LJ, Lewis J; AASK Study Group (2006) Cardiovascular outcomes in the African American Study of Kidney Disease and Hypertension (AASK) Trial. Am J Kidney Dis 48:739–751

    Article  CAS  PubMed  Google Scholar 

  40. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA (2014) The proximal tubule and albuminuria: really! J Am Soc Nephrol 25:443–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Birn H, Christensen EI, Nielsen S (1993) Kinetics of endocytosis in renal proximal tubule studied with ruthenium red as membrane marker. Am J Physiol 264:F239–F250

    CAS  PubMed  Google Scholar 

  43. Zhou ZY, Tang YP, Xiang J, Wua P, Jin HM, Wang Z, Mori M, Cai DF (2010) Neuroprotective effects of water-soluble Ganoderma lucidum polysaccharides on cerebral ischemic injury in rats. J Ethnopharmacol 131:154–164

    Article  CAS  PubMed  Google Scholar 

  44. Song J, Meng L, Li S, Qu L, Li X (2009) A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, improved renal microvascular insufficiency in 5/6 nephrectomized rats. Vascul Pharmacol 50:185–193

    Article  CAS  PubMed  Google Scholar 

  45. Lee BC, Choi JB, Cho HJ, Kim YS (2009) Rehmannia glutinosa ameliorates the progressive renal failure induced by 5/6 nephrectomy. J Ethnopharmacol 122:131–135

    Article  PubMed  Google Scholar 

  46. Bai F, Makino T, Kono K, Nagatsu A, Ono T, Mizukami H (2013) Calycosin and formononetin from astragalus root enhance dimethylarginine dimethylaminohydrolase 2 and nitric oxide synthase expressions in Madin Darby Canine Kidney II cells. J Nat Med 67:782–789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues at the Department of Japanese Oriental Medicine and Division of Kampo Diagnostics for the generous support and discussions.

Funding

This study was funded in part by the Uehara Memorial Foundation (Tokyo, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Fujimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Fujimoto, M., Watari, H. et al. The renoprotective effect of shichimotsukokato on hypertension-induced renal dysfunction in spontaneously hypertensive rats. J Nat Med 70, 152–162 (2016). https://doi.org/10.1007/s11418-015-0945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0945-1

Keywords

Navigation