Skip to main content
Log in

Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

A methanol extract of the flower buds of Chimonanthus praecox (L.) Link (Calycanthaceae) demonstrated inhibitory effects on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. From the extract, five dimeric pyrrolidinoindoline alkaloids and four sesquiterpenes were isolated, together with 16 known compounds. Among them, (−)-chimonanthine (1, IC50 = 0.93 μM), (−)-folicanthine (2, 1.4 μM), and (−)-calycanthidine (3, 1.8 μM) showed potent inhibitory effects without notable cytotoxicity at the effective concentrations. The most potent alkaloid (1) inhibited both tyrosinase and tyrosine-related protein-1 mRNA expressions, to which the melanogenesis inhibitory activity would be ascribable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zhang J-W, Gao J-M, Xu T, Zhang X-C, Ma Y-T, Jarussophon S, Konishi Y (2009) Antifungal activity of alkaloids from the seeds of Chimonanthus praecox. Chem Biodiv 6:838–845

    Article  CAS  Google Scholar 

  2. Wang W-X, Cao L, Xiong J, Xia G, Hu J-F (2011) Constituents from Chimonanthus praecox (wintersweet). Phytochem Lett 4:271–274

    Article  CAS  Google Scholar 

  3. Lv J-S, Zhang L-L, Chu X-Z, Zhou J-F (2012) Chemical composition, antioxidant and antimicrobial activity of the extracts of the flowers of the Chinese plant Chimonanthus praecox. Nat Prod Res 26:1363–1367

    Article  CAS  PubMed  Google Scholar 

  4. Takayama H, Matsuda Y, Masubuchi K, Ishida A, Kitajima M, Aimi N (2004) Isolation, structure elucidation, and total synthesis of two new Chimonanthus alkaloids, chimonamidine and chimonanthidine. Tetrahedron 60:893–900

    Article  CAS  Google Scholar 

  5. Kitajima M, Mori I, Arai K, Kogure N, Takayama H (2006) Two new tryptamine-derived alkaloids from Chimonanthus praecox f. concolor. Tetrahedron Lett 47:3199–3202

    Article  CAS  Google Scholar 

  6. Prota G (1988) Progress in the chemistry of melanins and related metabolites. Med Res Rev 8:525–556

    Article  CAS  PubMed  Google Scholar 

  7. Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723

    Article  CAS  PubMed  Google Scholar 

  8. Hearing VJ, Korner AM, Pawelek JM (1982) New regulators of melanogenesis are associated with purified tyrosinase isozymes. J Invest Dermatol 79:16–18

    Article  CAS  PubMed  Google Scholar 

  9. Hearing VJ, Jiménez M (1987) Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int J Biochem 19:1141–1147

    Article  CAS  PubMed  Google Scholar 

  10. Kuzumaki T, Matsuda A, Wakamatsu K, Ito S, Ishikawa K (1993) Eumelanin biosynthesis is regulated by coordinate expression of tyrosinase and tyrosinase-related protein-1 genes. Exp Cell Res 207:33–40

    Article  CAS  PubMed  Google Scholar 

  11. Friedmann PS, Gilchrest BA (1987) Ultraviolet radiation directly induces pigment production by cultured human melanocytes. J Cell Physiol 133:88–94

    Article  CAS  PubMed  Google Scholar 

  12. Hunt G, Todd C, Cresswell JE, Thody AJ (1994) Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J Cell Sci 107:205–211

    CAS  PubMed  Google Scholar 

  13. Steinberg ML, Whittaker JR (1976) Stimulation of melanotic expression in a melanoma cell line by theophylline. J Cell Physiol 87:265–275

    Article  CAS  PubMed  Google Scholar 

  14. Wong G, Pawelek J (1975) Melanocyte-stimulating hormone promotes activation of pre-existing tyrosinase molecules in Cloudman S91 melanoma cells. Nature 255:644–646

    Article  CAS  PubMed  Google Scholar 

  15. Matsuda H, Morikawa T, Ninomiya K, Yoshikawa M (2001) Hepatoprotective constituents from Zedoariae rhizome: absolute stereostructures of three new carabrane-type sesquiterpenes, curcumenolactiones A, B, and C. Bioorg Med Chem 9:909–916

    Article  CAS  PubMed  Google Scholar 

  16. Raharivelomanana P, Bianchini J-P, Cambon A, Azzaro M, Faure R (1995) Two-dimensional NMR of sesquiterpenes 8—complete assignment of 1H and 13C NMR spectra of seven sesquiterpene alcohols from Neocallitropsis pancheri. Magn Reson Chem 33:233–235

    Article  CAS  Google Scholar 

  17. Matsuda H, Kageura T, Oda M, Morikawa T, Sakamoto Y, Yoshikawa M (2001) Effects of constituents from the bark of Magnolia obovata on nitric oxide production in lipopolysaccharide-activated macrophages. Chem Pharm Bull 49:716–720

    Article  CAS  PubMed  Google Scholar 

  18. Kitagawa I, Cui Z, Son BW, Kobayashi M, Kyogoku Y (1987) Marine natural products. XVII. Nephtheoxydiol, a new cytotoxic hydroperoxy-germacrane sesquiterpene, and related sesquiterpenoids from an Okinawan soft coral of Nephthea sp. (Nephtheidae). Chem Pharm Bull 35:124–135

    Article  CAS  PubMed  Google Scholar 

  19. Kim JS, Kim JC, Shim SH, Lee EJ, Jin WY, Bae K, Son KH, Kim HP, Kang SS, Chang HW (2006) Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity. Arch Pharm Res 29:617–623

    Article  CAS  PubMed  Google Scholar 

  20. Okuyama E, Hasegawa T, Matsushita T, Fujimoto H, Ishibashi M, Yamazaki M (2001) Analgesic components of saposhnikovia root (Saposhnikovia divaricata). Chem Pharm Bull 49:154–160

    Article  CAS  PubMed  Google Scholar 

  21. Voirin S, Baumes R, Bayonove C (1990) Synthesis and n.m.r. spectral properties of grape monoterpenyl glycosides. Carbohydr Res 207:39–56

    Article  CAS  Google Scholar 

  22. Otsuka H, Takeda Y, Yamasaki K (1990) Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum. Phytochemistry 29:3681–3683

    Article  CAS  PubMed  Google Scholar 

  23. Hamerski L, Bomm MD, Silva DHS, Young MCM, Furlan M, Eberlin MN, Castro-Gamboa I, Cavalheiro AJ, da Silva Bolzani V (2005) Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae). Phytochemistry 66:1927–1932

    Article  CAS  PubMed  Google Scholar 

  24. Konishi T, Wada S, Kiyosawa S (1993) Constituents of the leaves of Daphne pseudo-mezereum. Yakugaku Zasshi 113:670–675

    CAS  PubMed  Google Scholar 

  25. Bisset NG, Choudhury AK, Houghton PJ (1989) Phenolic glycosides from the fruit of Strychnos nux-vomica. Phytochemistry 28:1553–1554

    Article  CAS  Google Scholar 

  26. Chaurasia N, Wichtl M (1987) Flavonolglykoside aus Urtica dioica. Planta Med 53:432–434

    Article  CAS  PubMed  Google Scholar 

  27. Senatore F, D’Agostino M, Dini I (2000) Flavonoid glycosides of Barbarea vulgaris L. (Brassicaceae). J Agric Food Chem 48:2659–2662

    Article  CAS  PubMed  Google Scholar 

  28. De Rosa S, De Giulio A, Tommonaro G (1996) Aliphatic and aromatic glycosides from the cell cultures of Lycopersicon esculentum. Phytochemistry 42:1031–1034

    Article  PubMed  Google Scholar 

  29. Verotta L, Orsini F, Sbacchi M, Scheildler MA, Amador TA, Elisabetsky E (2002) Synthesis and antinociceptive activity of chimonanthines and pyrrolidinoindoline-type alkaloids. Bioorg Med Chem 10:2133–2142

    Article  CAS  PubMed  Google Scholar 

  30. Fang C-L, Horne S, Taylor N, Rodrigo R (1994) Dimerization of a 3-substituted oxindole at C-3 and its application to the synthesis of (±)-folicanthine. J Am Chem Soc 116:9480–9486

    Article  CAS  Google Scholar 

  31. Hu F, Lesney PF (1964) The isolation and cytology of two pigment cell strains from B-16 mouse melanomas. Cancer Res 24:1634–1643

    CAS  PubMed  Google Scholar 

  32. Nakashima S, Matsuda H, Oda Y, Nakamura S, Xu F, Yoshikawa M (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg Med Chem 18:2337–2345

    Article  CAS  PubMed  Google Scholar 

  33. Bao K, Dai Y, Zhu Z-B, Tu F-J, Zhang W-G, Yao X-S (2010) Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg Med Chem 18:6708–6714

    Article  CAS  PubMed  Google Scholar 

  34. Parvez S, Kang M, Chung HS, Bae H (2007) Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 21:805–816

    Article  CAS  PubMed  Google Scholar 

  35. Parvez S, Kang M, Chung H-S, Cho C, Hong M-C, Shin M-K, Bae H (2006) Survey and mechanism of skin depigmentating and lightening agents. Phytother Res 20:921–934

    Article  CAS  PubMed  Google Scholar 

  36. Chang T-S (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440–2475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bertolotto C, Buscá R, Abbe P, Bille K, Aberdam E, Ortonne J-P, Ballotti R (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18:694–702

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Muraoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morikawa, T., Nakanishi, Y., Ninomiya, K. et al. Dimeric pyrrolidinoindoline-type alkaloids with melanogenesis inhibitory activity in flower buds of Chimonanthus praecox . J Nat Med 68, 539–549 (2014). https://doi.org/10.1007/s11418-014-0832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0832-1

Keywords

Navigation