Skip to main content
Log in

Biological and biomedical functions of Penta-O-galloyl-d-glucose and its derivatives

  • Mini-Review
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Penta-O-galloyl-d-glucose (PGG) is a simple hydrolysable tannin in plants. PGG exists in two anomeric forms, α-PGG and β-PGG. While β-PGG can be found in a wide variety of plants, α-PGG is rather rare in nature. Numerous studies with β-PGG revealed a wide variety of biological activities, such as anti-microbial and anti-cancer functions. Until recently, studies with α-PGG were limited by the lack of its availability. Since the development of an efficient chemical synthesis of the compound, several investigations have revealed its anti-diabetic, anti-cancer, and anti-platelet-coagulation functions. Based on structure–activity-relationship (SAR) studies with α-PGG, a variety of α-PGG-related novel compounds were synthesized and some of them have been shown to possess promising therapeutic activities. In this review, the authors will survey and evaluate the biological functions of PGG with a focus on α-PGG and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  CAS  PubMed  Google Scholar 

  2. Bennick A (2002) Interaction of plant polyphenols with salivary proteins. Crit Rev Oral Biol Med 13:184–196

    Article  PubMed  Google Scholar 

  3. Baxter NJ, Lilley TH, Haslam E, Williamson MP (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577

    Article  CAS  PubMed  Google Scholar 

  4. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    Article  CAS  PubMed  Google Scholar 

  5. Hagerman AE, Riedl KM, Rice RE (1999) Tannins as biological antioxidants. Basic Life Sci 66:495–505

    CAS  PubMed  Google Scholar 

  6. Kolodziej H, Kayser O, Latté KP, Kiderlen AF (1999) Enhancement of antimicrobial activity of tannins and related compounds by immune modulatory effects. Basic Life Sci 66:575–594

    CAS  PubMed  Google Scholar 

  7. Corder R, Douthwaite JA, Lees DM, Khan NQ, Viseu Dox Santos AC, Wood EG, Carrier MJ (2001) Endothelin-1 synthesis reduced by red wine. Nature 414:863–864

    Article  CAS  PubMed  Google Scholar 

  8. Quideau S, Jourdes M, Lefeuvre D, Pardon P, Saucier C, Teissedre P-L, Glories Y (2010) Ellagitannins—an underestimated class of plant polyphenols: chemical reactivity of C-Glucosidic ellagitannins in relation to wine chemistry and biological activity. In: Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (eds) Recent advances in polyphenol research, vol 2. Wiley-Blackwell, Oxford, pp 81–137

    Google Scholar 

  9. Tanaka T, Nonaka G, Nishioka I (1985) Punicafolin, an ellagitannin from the leaves of Punica granatum. Phytochemistry 24:2075–2078

    Article  CAS  Google Scholar 

  10. Glabasnia A, Hofmann T (2006) Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J Agric Food Chem 54:3380–3390

    Article  CAS  PubMed  Google Scholar 

  11. Jourdes M, Pouysegu L, Deffieux D, Teissedre P-L, Quideau S (2013) Hydrolyzable tannins: gallotannins and ellagitannins. In: Ramawat KG, Merillon JM (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 1975–2010

    Chapter  Google Scholar 

  12. Gin H, Rigalleau V, Caubet O, Masquelier J, Aubertin J (1999) Effects of red wine, tannic acid, or ethanol on glucose tolerance in non-insulin-dependent diabetic patients and on starch digestibility in vitro. Metabolism 48:1179–1183

    Article  CAS  PubMed  Google Scholar 

  13. Park KY, Lee HJ, Jeong SJ, Lee HJ, Kim HS, Kim SH, Lim S, Kim HC, Lü J, Kim SH (2010) 1,2,3,4,6-Penta-O-galloly-beta-d-glucose suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1α and signaling in LNCaP prostate cancer cells. Biol Pharm Bull 33:1835–1840

    Article  CAS  PubMed  Google Scholar 

  14. Piao X, Piao XL, Kim HY, Cho EJ (2008) Antioxidative activity of geranium (Pelargonium inquinans Ait) and its active component, 1,2,3,4,6-Penta-O-galloyl-β-d-glucose. Phytother Res 22:534–538

    Article  CAS  PubMed  Google Scholar 

  15. Nishizawa M, Yamagishi T, Nonaka G, Nishioka I, Bando H (1982) Novel hydrolyzable tannins from Nuphar japonicum DC. Chem Pharm Bull 30:1094–1097

    Article  CAS  Google Scholar 

  16. Klein G, Kim J, Himmeldirk K, Cao Y, Chen X (2007) Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. Evid Based Complement Altern Med 4:401–407

    Article  Google Scholar 

  17. Ren Y, Himmeldirk K, Chen X (2006) Synthesis and structure-activity relationship study of antidiabetic Penta-O-galloyl-d-glucopyranose and its analogues. J Med Chem 49:2829–2837

    Article  CAS  PubMed  Google Scholar 

  18. Binkley RC, Ziepfel JC, Himmeldirk KB (2009) Anomeric selectivity in the synthesis of galloyl esters of d-glucose. Carbohydr Res 344:237–239

    Article  CAS  PubMed  Google Scholar 

  19. Khanbabaee K, Lötzerich K (1997) Efficient total synthesis of the natural products 2,3,4,6-tetra-O-galloyl-d-glucopyranose, 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose and the unnatural 1,2,3,4,6-Penta-O-galloyl-α-d-glucopyranose. Tetrahedron 53:10725–10732

    Article  CAS  Google Scholar 

  20. Yu X, Chu S, Hagerman AE, Lorigan GA (2011) Probing the interaction of polyphenols with lipid bilayers by solid-state NMR spectroscopy. J Agric Food Chem 59:6783–6789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sawada H, Hamatake M, Hara A, Nakagawa M, Nakayama T (1989) Inhibition of human placenta aldose reductase by tannic acid. Chem Pharm Bull (Tokyo) 37:1662–1664

    Article  CAS  Google Scholar 

  22. Satoh K, Nagai F, Ushiyama K, Yasuda I, Seto T, Kano I (1997) Inhibition of Na+, K(+)-ATPase by 1,2,3,4,6-Penta-O-galloyl-β-d-glucose, a major constituent of both moutan cortex and Paeoniae radix. Biochem Pharmacol 53:611–614

    Article  CAS  PubMed  Google Scholar 

  23. Gyémánt G, Zajácz A, Bécsi B, Ragunath C, Ramasubbu N, Erdodi F, Batta G, Kandra L (2009) Evidence for pentagalloyl glucose binding to human salivary α-amylase through aromatic amino acid residues. Biochim Biophys Acta 1794:291–296

    Article  PubMed  Google Scholar 

  24. Ho LL, Chen WJ, Lin-Shiau SY, Lin JK (2002) Penta-O-galloyl-β-d-glucose inhibits the invasion of mouse melanoma by suppressing metalloproteinase-9 through down-regulation of activator protein-1. Eur J Pharmacol 453:149–158

    Article  CAS  PubMed  Google Scholar 

  25. Lee SJ, Lee IS, Mar W (2003) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-Penta-O-galloyl-β-d-glucose in murine macrophage cells. Arch Pharm Res 26:832–839

    Article  CAS  PubMed  Google Scholar 

  26. Kiss AK, Derwińska M, Dawidowska A, Naruszewicz M (2008) Novel biological properties of Oenothera paradoxa defatted seed extracts: effects on metallopeptidase activity. J Agric Food Chem 56:7845–7852

    Article  CAS  PubMed  Google Scholar 

  27. Zhang F, Luo SY, Ye YB, Zhao WH, Sun XG, Wang ZQ, Li R, Sun YH, Tian WX, Zhang YX (2008) The antibacterial efficacy of an aceraceous plant [Shantung maple (Acer truncatum Bunge)] may be related to inhibition of bacterial β-oxoacyl-acyl carrier protein reductase (FabG). Biotechnol Appl Biochem 51:73–78

    Article  CAS  PubMed  Google Scholar 

  28. Kim SJ, Sancheti SA, Sancheti SS, Um BH, Yu SM, Seo SY (2010) Effect of 1,2,3,4,6-Penta-O-galloyl-β-d-glucose on elastase and hyaluronidase activities and its type II collagen expression. Acta Pol Pharm 67:145–150

    CAS  PubMed  Google Scholar 

  29. Mizushina Y, Zhang J, Pugliese A, Kim SH, Lü J (2010) Anti-cancer gallotannin Penta-O-galloyl-β-d-glucose is a nanomolar inhibitor of select mammalian DNA polymerases. Biochem Pharmacol 80:1125–1132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bhimani RS, Troll W, Grunberger D, Frenkel K (1993) Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer Res 53:4528–4533

    CAS  PubMed  Google Scholar 

  31. Lee JH, Yehl M, Ahn KS, Kim SH, Lieske JC (2009) 1,2,3,4,6-Penta-O-galloyl-β-d-glucose attenuates renal cell migration, hyaluronan expression, and crystal adhesion. Eur J Pharmacol 606:32–37

    Article  CAS  PubMed  Google Scholar 

  32. Oh GS, Pae HO, Choi BM, Lee HS, Kim IK, Yun YG, Kim JD, Chung HT (2004) Penta-O-galloyl-β-d-glucose inhibits phorbol myristate acetate-induced interleukin-8 [correction of interleukin-8] gene expression in human monocytic U937 cells through its inactivation of nuclear factor-kappaB. Int Immunopharmacol 4:377–386

    Article  CAS  PubMed  Google Scholar 

  33. Kageyama-Yahara N, Suehiro Y, Maeda F, Kageyama S, Fukuoka J, Katagiri T, Yamamoto T, Kadowaki M (2010) Pentagalloylglucose down-regulates mast cell surface FcepsilonRI expression in vitro and in vivo. FEBS Lett 584:111–118

    Article  CAS  PubMed  Google Scholar 

  34. Ju SM, Song HY, Lee SJ, Seo WY, Sin DH, Goh AR, Kang YH, Kang IJ, Won MH, Yi JS, Kwon DJ, Bae YS, Choi SY, Park J (2009) Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 1,2,3,4,6-Penta-O-galloyl-β-d-glucose via blockade of NF-kappaB and STAT1 activation in the HaCaT cells. Biochem Biophys Res Commun 387:115–120

    Article  CAS  PubMed  Google Scholar 

  35. Choi BM, Kim HJ, Oh GS, Pae HO, Oh H, Jeong S, Kwon TO, Kim YM, Chung HT (2002) 1,2,3,4,6-Penta-O-galloyl-β-d-glucose protects rat neuronal cells (Neuro 2A) from hydrogen peroxide-mediated cell death via the induction of heme oxygenase-1. Neurosci Lett 328:185–189

    Article  CAS  PubMed  Google Scholar 

  36. Lin B (2011) Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev Med Chem 11:1222–1238

    CAS  PubMed  Google Scholar 

  37. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-Penta-O-galloyl-β-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J Neurochem 109:1648–1657

    Article  CAS  PubMed  Google Scholar 

  38. Lin MH, Chang FR, Hua MY, Wu YC, Liu ST (2011) Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother 55:1021–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu G, Xiong S, Xiang YF, Guo CW, Ge F, Yang CR, Zhang YJ, Wang YF, Kitazato K (2011) Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol 156:1359–1369

    Article  CAS  PubMed  Google Scholar 

  40. Pei Y, Chen ZP, Ju HQ, Komatsu M, Ji YH, Liu G, Guo CW, Zhang YJ, Yang CR, Wang YF, Kitazato K (2011) Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro. Biochem Biophys Res Commun 405:186–191

    Article  CAS  PubMed  Google Scholar 

  41. Pei Y, Xiang YF, Chen JN, Lu CH, Hao J, Du Q, Lai CC, Qu C, Li S, Ju HQ, Ren Z, Liu QY, Xiong S, Qian CW, Zeng FL, Zhang PZ, Yang CR, Zhang YJ, Xu J, Kitazato K, Wang YF (2011) Pentagalloylglucose downregulates cofilin1 and inhibits HSV-1 infection. Antivir Res 89:98–108

    Article  CAS  PubMed  Google Scholar 

  42. Lee SJ, Lee HK, Jung MK, Mar W (2006) In vitro antiviral activity of 1,2,3,4,6-Penta-O-galloyl-β-d-glucose against hepatitis B virus. Biol Pharm Bull 29:2131–2134

    Article  CAS  PubMed  Google Scholar 

  43. Ji MS, Piao XL, Jin YL, Park RD (2005) Anticoagulant 1,2,3,4,6-pentagalloyl-β-d-glucopyranose isolated from geranium (Pelargonium inquinans Ait). Arch Pharm Res 28:1037–1041

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Kim J, Li J, Liu F, Liu X, Himmeldirk K, Ren Y, Wagner TE, Chen X (2005) Natural anti-diabetic compound 1,2,3,4,6-Penta-O-galloyl-d-glucopyranose binds to insulin receptor and activates insulin-mediated glucose transport signaling pathway. Biochem Biophys Res Commun 336:430–437

    Article  CAS  PubMed  Google Scholar 

  45. Ryu HG, Jeong SJ, Kwon HY, Lee HJ, Lee EO, Lee MH, Choi SH, Ahn KS, Kim SH (2012) Penta-O-galloyl-β-d-glucose attenuates cisplatin-induced nephrotoxicity via reactive oxygen species reduction in renal epithelial cells and enhances antitumor activity in Caki-2 renal cancer cells. Toxicol In Vitro 26:206–214

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Nkhata K, Shaik AA, Wang L, Li L, Zhang Y, Higgins LA, Kim KH, Liao JD, Xing C, Kim SH, Lu J (2011) Mouse prostate proteome changes induced by oral pentagalloylglucose treatment suggest targets for cancer chemoprevention. Curr Cancer Drug Targets 11:787–798

    Article  CAS  PubMed  Google Scholar 

  47. Hu H, Zhang J, Lee HJ, Kim SH, Lü J (2009) Penta-O-galloyl-beta-d-glucose induces S- and G1-cell cycle arrests in prostate cancer cells targeting DNA replication and cyclin D1. Carcinogenesis 30:818–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Yu WS, Jeong SJ, Kim JH, Lee HJ, Song HS, Kim MS, Ko E, Lee HJ, Khil JH, Jang HJ, Kim YC, Bae H, Chen CY, Kim SH (2011) The genome-wide expression profile of 1,2,3,4,6-penta-O-galloyl-β-d-glucose-treated MDA-MB-231 breast cancer cells: molecular target on cancer metabolism. Mol Cells 32:123–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Huang C, Lee SY, Lin CL, Tu TH, Chen LH, Chen YJ, Huang HC (2013) Co-treatment with quercetin and 1,2,3,4,6-penta-O-galloyl-β-d-glucose causes cell cycle arrest and apoptosis in human breast cancer MDA-MB-231 and AU565 cells. J Agric Food Chem 61:6430–6445

    Article  CAS  PubMed  Google Scholar 

  50. Chai Y, Lee H, Shaik AA, Nkhata K, Xing C, Zhang J, Jeong S, Kim S, Lü J (2010) Penta-O-galloyl-β-D-glucose induces G1 arrest and DNA replicative S-phase arrest independently of P21 cyclin-dependent kinase inhibitor 1A, P27 cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple-negative xenograft growth. Breast Cancer Res 12:R67

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yin S, Dong Y, Li J, Lü J, Hu H (2011) Penta-1,2,3,4,6-O-galloyl-β-d-glucose induces senescence-like terminal S-phase arrest in human hepatoma and breast cancer cells. Mol Carcinog 50:592–600

    Article  CAS  PubMed  Google Scholar 

  52. Oh GS, Pae HO, Oh H, Hong SG, Kim IK, Chai KY, Yun YG, Kwon TO, Chung HT (2001) In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-β-d-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett 174:17–24

    Article  CAS  PubMed  Google Scholar 

  53. Jaszewska E, Kośmider A, Kiss AK, Naruszewicz M (2009) Pro-oxidative and pro-apoptotic action of defatted seeds of Oenothera paradoxa on human skin melanoma cells. J Agric Food Chem 57:8282–8289

    Article  CAS  PubMed  Google Scholar 

  54. Huh JE, Lee EO, Kim MS, Kang KS, Kim CH, Cha BC, Surh YJ, Kim SH (2005) Penta-O-galloyl-β-d-glucose suppresses tumor growth via inhibition of angiogenesis and stimulation of apoptosis: roles of cyclooxygenase-2 and mitogen-activated protein kinase pathways. Carcinogenesis 26:1436–1445

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Li L, Kim SH, Hagerman AE, Lü J (2009) Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 26:2066–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Huh NW, Porter NA, McIntosh TJ, Simon SA (1996) The interaction of polyphenols with bilayers: conditions for increasing bilayer adhesion. Biophys J 71:3261–3277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Frutos P, Hervas G, Giraldez FJ, Mantecon AR (2004) Review. Tannins and ruminant nutrition. Span J Agric Res 2:191–202

    Google Scholar 

  58. Muller-Harvey I, McAllan AB (1992) Tannins: their biochemistry and nutritional properties. Adv Plant Cell Biochem Biotechnol 1:151–217

    Google Scholar 

  59. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  60. Cao Y, Evans SC, Soans E, Malki A, Liu Y, Liu Y, Chen X (2011) Insulin receptor signaling activated by penta-O-galloyl-α-D-glucopyranose induces p53 and apoptosis in cancer cells. Apoptosis 16:902–913

    Article  CAS  PubMed  Google Scholar 

  61. Boucher J, Macotela Y, Bezy O, Mori MA, Kriauciunas K, Kahn CR (2010) A kinase-independent role for unoccupied insulin and IGF-1 receptors in the control of apoptosis. Sci Signal 3:ra87

    Article  CAS  PubMed  Google Scholar 

  62. Perveen R, Funk K, Thuma J, Wulf Ridge S, Cao Y, Akkerman JW, Chen X, Akbar H (2011) A novel small molecule 1,2,3,4,6-penta-O-galloyl-α-D-glucopyranose mimics the antiplatelet actions of insulin. PLoS ONE 6:e26238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Cao Y, Li Y, Kim J, Ren Y, Himmeldirk K, Liu Y, Qian Y, Liu F, Chen X (2013) Orally efficacious novel small molecule 6-chloro-6-deoxy-1,2,3,4-tetra-O-galloyl-α-D-glucopyranose selectively and potently stimulates insulin receptor and alleviates diabetes. J Mol Endocrinol 51:15–26

    Article  PubMed  Google Scholar 

  64. Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D (2001) Insulin and IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:4969–4975

    Article  CAS  PubMed  Google Scholar 

  65. Huang F, Xu LA, Khambata-Ford S (2012) Correlation between gene expression of IGF-1R pathway markers and cetuximab benefit in metastatic colorectal cancer. Clin Cancer Res 18:1156–1166

    Article  CAS  PubMed  Google Scholar 

  66. Ma Y, Cheng Q, Ren Z, Xu L, Zhao Y, Sun J, Hu S, Xiao W (2012) Induction of IGF-1R expression by EGR-1 facilitates the growth of prostate cancer cells. Cancer Lett 317:150–156

    Article  CAS  PubMed  Google Scholar 

  67. Lewis DA, Travers JB, Somani AK, Spandau DF (2010) The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene 29:1475–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wu J, Dauchy RT, Tirrell PC, Wu SS, Lynch DT, Jitawatanarat P, Burrington CM, Dauchy EM, Blask DE, Greene MW (2011) Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts. Cancer Res 71:2622–2631

    Article  CAS  PubMed  Google Scholar 

  69. Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, Li J, Ho GY, Xue X, Anderson GL, Kaplan RC, Harris TG, Howard BV, Wylie-Rosett J, Burk RD, Strickler HD (2009) Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 101:48–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Hemkens LG, Grouven U, Bender R, Gunster C, Gutschmidt S, Selke GW, Sawicki PT (2009) Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52:1732–1744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wilson C (2011) Diabetes: long-term use of insulin glargine might increase the risk of breast cancer. Nat Rev Endocrinol 7:499

    Article  PubMed  Google Scholar 

  72. Zhang W, Liu Y, Chen X, Bergmeier SC (2010) Novel inhibitors of basal glucose transport as potential anticancer agents. Bioorg Med Chem Lett 20:2191–2194

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Zhang W, Cao Y, Liu Y, Bergmeier S, Chen X (2010) Small compound inhibitors of basal glucose transport inhibit cell proliferation and induce apoptosis in cancer cells via glucose-deprivation-like mechanisms. Cancer Lett 298:176–185

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Cao Y, Zhang W, Bergmeier S, Qian Y, Akbar H, Colvin R, Ding J, Tong L, Wu S, Hines J, Chen X (2012) A small molecule inhibitor of glucose transporter 1 down-regulates glycolysis, induces cell cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol Cancer Ther 11:1672–1682

    Article  CAS  PubMed  Google Scholar 

  75. Ren Y, Chen X (2007) Distribution, bioactivities and therapeutical potentials of pentagalloylglucopyranose. Curr Bioact Compd 3:81–89

    Article  CAS  Google Scholar 

  76. Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11:1365–1402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Vattem DA, Ghaedian R, Shetty K (2005) Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac J Clin Nutr 14:120–130

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by an NSF PFI Grant IIP-0227907 to the Edison Biotechnology Institute of Ohio University and an Ohio University medical school RSAC award to X. Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhuo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Himmeldirk, K.B., Qian, Y. et al. Biological and biomedical functions of Penta-O-galloyl-d-glucose and its derivatives. J Nat Med 68, 465–472 (2014). https://doi.org/10.1007/s11418-014-0823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-014-0823-2

Keywords

Navigation