Skip to main content
Log in

Attenuating effect of Fufang Xueshuantong Capsule on kidney function in diabetic nephropathy model

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Fufang Xueshuantong Capsule (FXST) can reduce urinary albumin and whole blood viscosity in early diabetic nephropathy (DN) patients. This research aimed to investigate the effect of FXST on kidney function in DN rats and to identify the underlying molecular mechanisms. We performed Illumina RatRef-12 Expression BeadChip gene array analysis, and found that 3-month treatment with FXST significantly decreased 24-h urinary albumin, serum creatinine and blood urea nitrogen, and increased urinary creatinine in DN model rats. Kidney hypertrophy and glomerular mesangial matrix expansion were also ameliorated. Kidneys from the high-dose FXST group had 67 genes with significantly changed expression (34 increased, 33 decreased). DAVID analysis showed that the fold enrichment score of “collagen type 1” was the highest in all GO functional categories. DAVID function annotation cluster analysis indicated that the top annotation cluster included three GO function categories: “response to nutrient”, “response to nutrient levels” and “response to extracellular stimulus”. Based on KEGG pathway analysis, we found that the most two significant pathways were “metabolism of xenobiotics by cytochrome P450” and “drug metabolism”. Real-time PCR showed that relative levels of Col1a1 (collagen type 1 alpha 1), Ctgf (connective tissue growth factor) and Tgfb1 (transforming growth factor beta 1) were significantly decreased in the FXST group, while Cyp2c23 (cytochrome P-450 family 2 subfamily C polypeptide 23) and Nphs1 (nephrin) were increased. The increased expressions of TGFβ and collagen (type 1, α2) in the kidneys of DN rats were attenuated by FXST. Our data suggest that FXST can moderate kidney function in DN rats. The mechanism may involve the BMP2–TGFβ–CTGF pathway, CYP2C23 and podocyte proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  2. Wu AY, Kong NC, de Leon FA, Pan CY, Tai TY, Yeung VT, Yoo SJ, Rouillon A, Weir MR (2005) An alarmingly high prevalence of diabetic nephropathy in Asian type 2 diabetic patients: the MicroAlbuminuria Prevalence (MAP) Study. Diabetologia 48:17–26

    Article  PubMed  CAS  Google Scholar 

  3. Dalla Vestra M, Saller A, Bortoloso E, Mauer M, Fioretto P (2000) Structural involvement in type 1 and type 2 diabetic nephropathy. Diabetes Metab 26:8–14

    PubMed  CAS  Google Scholar 

  4. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD (2010) US renal data systems: USRDS 2010 annual data report: atlas of end stage renal disease in the United States. http://www.usrds.org/2010/view/default.asp

  5. Ritz E, Orth SR (1999) Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 341:1127–1133

    Article  PubMed  CAS  Google Scholar 

  6. White KE, Marshall SM, Bilous RW (2008) Prevalence of atubular glomeruli in type 2 diabetic patients with nephropathy. Nephrol Dial Transpl 23:3539–3545

    Article  Google Scholar 

  7. Xing YW, Tang WJ, Zou JJ, Shi YQ (2010) Protective effect of compound Xueshuantong Capsule against damage of diabetic nephropathy in rat diabetic model. Acad J Second Mil Med Univ 30:1091–1094 (Chinese)

    Google Scholar 

  8. Lang J, Cao H, Wei A (1998) Comparative study on effect of Panax Notoginseng and Ticlid in treating early nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi 18:727–729 (Chinese)

    Google Scholar 

  9. Sugano M, Yamato H, Hayashi T, Ochiai H, Kakuchi J, Goto S, Nishijima F, Lino N, Kazama JJ, Takeuchi T, Mokuda O, Ishikawa T, Okazaki R (2006) High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: a new rat model of diabetic nephropathy. Nutr Metab Cardiovasc Dis 16:447–484

    Article  Google Scholar 

  10. Huang JH, Huang XH, Chen ZY, Zheng QS, Sun RY (2004) Dose conversion among different animals and healthy volunteers in pharmacological study. Chin J Clin Pharmacol Ther 9:1069–1072

    Google Scholar 

  11. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 346:371–374

    Article  PubMed  CAS  Google Scholar 

  12. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  13. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  14. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70

    Article  PubMed  Google Scholar 

  15. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  16. Gross ML, EI-Shakmak A, Szabo A, Koch A, Kuhlmann A, Munter K, Ritz E, Amann K (2003) ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia 46:856–868

    Article  PubMed  CAS  Google Scholar 

  17. Xuejiang W, Ichikawa H, Konishi T (2001) Antioxidant potential of qizhu tang, a Chinese herbal medicine, and the effect on cerebral oxidative damage after ischemia reperfusion in rats. Biol Pharm Bull 24:558–563

    Article  PubMed  CAS  Google Scholar 

  18. Wang L, Zhou GB, Liu P, Song JH, Liang Y, Yan XJ, Xu F, Wang BS, Mao JH, Shen ZX, Chen SJ, Chen Z (2008) Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc Natl Acad Sci USA 105:4826–4831

    Article  PubMed  CAS  Google Scholar 

  19. Yang CY, Xie ZG, Cheng WB, Jiang X, Chen ZH (2009) Effects of Panax notogenseng saponins on anti-hyperglycemic, anti-obese and prevention from kidney pathological changes in KK-Ay mice. Zhong Yao Cai 32:1571–1576 (Chinese)

    Google Scholar 

  20. Chen ZH, Li J, Liu J, Zhao Y, Zhang P, Zhang MX, Zhang L (2008) Saponins isolated from the root of Panax notoginseng showed significant anti-diabetic effects in KK-Ay mice. Am J Chin Med 36:939–951

    Article  PubMed  CAS  Google Scholar 

  21. Sang Z, Zhou L, Fan X, McCrimmon RJ (2010) Radix astragali (huangqi) as a treatment for defective hypoglycemia counterregulation in diabetes. Am J Chin Med 38:1027–1038

    Article  PubMed  Google Scholar 

  22. Luo P, Tan Z, Zhang Z, Li H, Mo Z (2008) Inhibitory effects of salvianolic acid B on the high glucose-induced mesangial proliferation via NF-kappaB-dependent pathway. Bio Pharm Bull 31:1381–1386

    Article  CAS  Google Scholar 

  23. Dalla Vestra M, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P (2003) Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes 52:1031–1035

    Article  PubMed  CAS  Google Scholar 

  24. Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G (2003) Nephrin expression is reduced in human diabetic nephropathy, evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52:1023–1030

    Article  PubMed  CAS  Google Scholar 

  25. Vleming LJ, Baelde JJ, Westendorp RW, Daha MR, van Es LA, Bruijn JA (1997) The glomerular deposition of PAS positive material correlates with renal function in human kidney diseases. Clin Nephrol 47:158–167

    PubMed  CAS  Google Scholar 

  26. Sharma K, Jin Y, Guo J, Ziyadeh FN (1996) Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45:522–530

    Article  PubMed  CAS  Google Scholar 

  27. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  28. Nett PC, Ortmann J, Celeiro J, Haas E, Hofmann-Lehmann R, Tornillo L, Terraciano LM, Barton M (2006) Transcriptional regulation of vascular bone morphogenetic protein by endothelin receptors in early autoimmune diabetes mellitus. Life Sci 78:2213–2218

    Article  PubMed  CAS  Google Scholar 

  29. Stelnicki EJ, LongakerMT HolmesD, Vanderwall K, Largman C, Harrison MR, Hoffman WY (1998) Bone morphogenetic protein-2 induces scar formation and skin maturation in the second trimester fetus. Plast Reconstr Surg 101:12–19

    Article  PubMed  CAS  Google Scholar 

  30. Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN (2006) Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther 18:55–62

    Article  PubMed  Google Scholar 

  31. Hocevar BA, Howe PH (2000) Analysis of TGF-beta-mediated synthesis of extracellular matrix components. Methods Mol Biol 142:55–65

    PubMed  CAS  Google Scholar 

  32. Sharma K, Ziyadeh FN (1995) Hyperglycemia and diabetic kidney disease: the case for transforming growth factor-b as a key mediator. Diabetes 44:1139–1146

    Article  PubMed  CAS  Google Scholar 

  33. Ziyadeh FN, Hoffman BB, Han DC, Iqlesias-De La Crus MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci USA 97:8015–8020

    Article  PubMed  CAS  Google Scholar 

  34. Ito Y, Goldschmeding YR, Bende RJ, Claessen N, Chand M, Kleii L, Rabelink T, Weening J, Aten J (2001) Kinetics of connective tissue growth factor expression during experimental proliferative glomerulonephritis. J Am Soc Nephrol 12:472–484

    PubMed  CAS  Google Scholar 

  35. Sinal CJ, Miyata M, Tohkin M, Nagata K, Bend JR, Gonzalez FJ (2000) Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. J Biol Chem 275:40504–40510

    Article  PubMed  CAS  Google Scholar 

  36. Wang MH (2006) Renal cytochrome P450-derived eicosanoids and hypertension. Curr Hyperten Rev 2:227–236

    Article  CAS  Google Scholar 

  37. Natarajan R, Reddy MA (2003) HETEs/EETs in renal glomerular and epithelial cell functions. Curr Opin Pharmacol 3:198–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Grants from the foundation of Peking Union Medical College Hospital (No. 2006119). Thanks go to Prof. Yuli Ling for elaborate work in pathology.

Conflict of interest

There is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Xiao, X., Li, M. et al. Attenuating effect of Fufang Xueshuantong Capsule on kidney function in diabetic nephropathy model. J Nat Med 67, 86–97 (2013). https://doi.org/10.1007/s11418-012-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-012-0654-y

Keywords

Navigation