Skip to main content
Log in

The role of a vanishing interfacial layer in perfect elasto-plasticity

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

A two-phase elasto-plastic material is investigated. It is shown that, if the interface is modeled as the limit of a vanishing layer of a third material, then the resulting two-phase material will exhibit a smaller interfacial dissipation than that of a pure two-phase model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Coscia, A. and Dal Maso, G., Fine properties of functions with bounded deformations, Arch. Rat. Mech. Anal., 139, 1997, 201–238.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N. and Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, 2000.

    MATH  Google Scholar 

  3. Dal Maso, G., DeSimone, A. and Mora, M. G., Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180(2), 2006, 237–291.

    Article  MathSciNet  MATH  Google Scholar 

  4. Evans, L. C. and Gariepy, R. F., Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  5. Francfort, G. A. and Giacomini, A., Small-strain heterogeneous elastoplasticity revisited, Comm. Pure Appl. Math., 65(9), 2012, 1185–1241.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kohn, R. V. and Temam, R., Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim., 10(1), 1983, 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  7. Mainik, A. and Mielke, A., Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, Evolution of rate-independent systems, Evolutionary Equations. Vol. II, Handb. Differ. Equ., Dafermos, A. and Feireisl, E. (eds.), Elsevier, North-Holland, Amsterdam, 2005, 461–559.

    Google Scholar 

  8. Solombrino, F., Quasistatic evolution problems for nonhomogeneous elastic plastic materials, J. Convex Anal., 16(1), 1979, 89–119.

    MathSciNet  Google Scholar 

  9. Suquet, P. M., Un espace fonctionnel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math. (5), 1(1), 1979, 77–87.

    Article  MathSciNet  MATH  Google Scholar 

  10. Suquet, P. M., Sur les équations de la plasticité: existence et régularité des solutions, J. Mécanique, 20(1), 1981, 3–39.

    MathSciNet  MATH  Google Scholar 

  11. Temam, R., Problèmes mathématiques en plasticité, Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science], Vol. 12, Gauthier-Villars, Montrouge, 1983.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles A. Francfort.

Additional information

Dedicated to Luc Tartar Notwithstanding His Dislike for Elasto-Plasticity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francfort, G.A., Giacomini, A. The role of a vanishing interfacial layer in perfect elasto-plasticity. Chin. Ann. Math. Ser. B 36, 813–828 (2015). https://doi.org/10.1007/s11401-015-0978-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-015-0978-5

Keywords

2000 MR Subject Classification

Navigation