Skip to main content
Log in

Non-Gaussian Test Models for Prediction and State Estimation with Model Errors

Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiquitous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scientific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Kac formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be useful for many other applications and algorithms for the real time prediction and the state estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bensoussan, A., Stochastic Control of Partially Observable Systems, Cambridge University Press, Cambridge, 1992.

    Book  MATH  Google Scholar 

  2. Bourlioux, A. and Majda, A. J., An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion, Combust. Theory Modell., 4(2), 2000, 189–210.

    Article  MathSciNet  MATH  Google Scholar 

  3. Branicki, M., Gershgorin, B. and Majda, A. J., Filtering skill for turbulent signals for a suite of nonlinear and linear Kalman filters, J. Comp. Phys., 231, 2012, 1462–1498.

    Article  MathSciNet  MATH  Google Scholar 

  4. Branicki, M. and Majda, A. J., Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities, Comm. Math. Sci., 11(1), 2012, in press.

  5. Branicki, M. and Majda, A. J., Quantifying uncertainty for predictions with model error in non-Gaussian models with intermittency, Nonlinearity, 25, 2012, 2543–2578.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cover, T. A. and Thomas, J. A., Elements of Information Theory, 2nd ed., Wiley-Interscience, Hoboken, 2006.

    MATH  Google Scholar 

  7. Gardiner, C., Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed., Springer Series in Synergetics, Springer, Berlin, 2010.

    Google Scholar 

  8. Gershgorin, B., Harlim, J. and Majda, A. J., Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation, J. Comp. Phys., 229, 2010, 32–57.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gershgorin, B., Harlim, J. and Majda, A. J., Test models for improving filtering with model errors through stochastic parameter estimation, J. Comp. Phys., 229, 2010, 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gershgorin, B. and Majda, A. J., A test model for fluctuation-dissipation theorems with time-periodic statistics, Physica D, 239, 2010, 1741–1757.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gershgorin, B. and Majda, A. J., Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. Part I: Gaussian models, J. Climate, 25, 2012, 4523–4548.

    Article  Google Scholar 

  12. Gershgorin, B and Majda, A. J., A nonlinear test model for filtering slow-fast systems, Comm. Math. Sci., 6, 2008, 611–649.

    MathSciNet  MATH  Google Scholar 

  13. Gershgorin, B. and Majda, A. J., Filtering a nonlinear slow-fast system with strong fast forcing, Comm. Math. Sci., 8, 2009, 67–92.

    MathSciNet  Google Scholar 

  14. Gershgorin, B. and Majda, A. J., Filtering a statistically exactly solvable test model for turbulent tracers from partial observations, J. Comp. Phys., 230, 2011, 1602–1638.

    Article  MathSciNet  MATH  Google Scholar 

  15. Harlim, J. and Majda, A. J., Filtering turbulent sparsely observed geophysical flows, Mon. Wea. Rev., 138(4), 2010, 1050–1083.

    Article  Google Scholar 

  16. Hersh, R., Random evolutions: a survey of results and problems, Rocky Mountain J. Math., 4(3), 1974, 443–477.

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  18. Kleeman, R., Information theory and dynamical system predictability, Entropy, 13, 2011, 612–649.

    Article  MathSciNet  MATH  Google Scholar 

  19. LeVeque, R., Numerical Methods for Conservation Laws, ETH Lectures in Mathematics Series, Birkhauser-Verlag, 1990.

  20. Liptser, R. S. and Shiryaev, A. N., Statistics of random process, 2nd ed., Springer-Verlag, New York, 2001.

    Google Scholar 

  21. Majda, A. and Kramer, P., Simplified models for turbulent diffusion: Theory, numerical modeling, and physical phenomena, Phys. Reports, 314(4), 1999, 237–257.

    Article  MathSciNet  Google Scholar 

  22. Majda, A. J., Challenges in climate science and contemporary applied mathematics, Comm. Pure Appl. Math., 65(7), 2012, 920–948.

    Article  MathSciNet  MATH  Google Scholar 

  23. Majda, A. J., Abramov, R. and Gershgorin, B., High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability, Proc. Natl. Acad. Sci. USA, 107(2), 2010, 581–586.

    Article  MathSciNet  MATH  Google Scholar 

  24. Majda, A. J., Abramov, R. V. and Grote, M. J., Information theory and stochastics for multiscale nonlinear systems, CRM Monograph Series, vol. 25, Americal Mathematical Society, Providence, 2005.

    Google Scholar 

  25. Majda, A. J. and Branicki, M., Lessons in uncertainty quantification for turbulent dynamical systems, Discrete Cont. Dyn. Systems, 32(9), 2012, 3133–3231.

    Article  MathSciNet  MATH  Google Scholar 

  26. Majda, A. J., Franzke, C. and Crommelin, D., Normal forms for reduced stochastic climate models, Proc. Natl. Acad. Sci., 106(10), 2009, 3649–3653.

    Article  MathSciNet  MATH  Google Scholar 

  27. Majda, A. J., Franzke, C., Fischer, A., Crommelin, D. T., Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model, Proc. Natl. Acad. Sci., 103(22), 2006, 8309–8314.

    Article  MathSciNet  MATH  Google Scholar 

  28. Majda, A. J. and Gershgorin, B., Quantifying uncertainty in climage change science through empirical information theory, Proc. Natl. Acad. Sci., 107(34), 2010, 14958–14963.

    Article  MathSciNet  Google Scholar 

  29. Majda, A. J. and Gershgorin, B., Improving model fidelity and sensitivity for complex systems through empirical information theory, Proc. Natl. Acad. Sci., 108(5), 2011, 10044–10049.

    Article  MathSciNet  Google Scholar 

  30. Majda, A. J. and Gershgorin, B., Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error, Proc. Natl. Acad. Sci., 108(31), 2011, 12599–12604.

    Article  MathSciNet  Google Scholar 

  31. Majda, A. J., Kleeman, R. and Cai, D., A mathematical framework for predictability through relative entropy, Methods Appl. Anal., 9(3), 2002, 425–444.

    MathSciNet  MATH  Google Scholar 

  32. Majda, A. J. and Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  33. Majda, A. J. and Gershgorin, B., Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency, Phil. Trans. Roy. Soc., 2011, In press.

  34. Majda, A. J. and Harlim, J., Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, 2012.

    Book  MATH  Google Scholar 

  35. Majda, A. J., Harlim, J. and Gershgorin, B., Mathematical strategies for filtering turbulent dynamical systems, Discrete Cont. Dyn. Systems, 27, 2010, 441–486.

    Article  MathSciNet  MATH  Google Scholar 

  36. Risken, H., The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd ed., Series in Synergetics, Springer-Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Branicki.

Additional information

In honor of the scientific heritage of Jacques-Louis Lions

Project supported by the Office of Naval Research (ONR) Grants (No. ONR DRI N00014-10-1-0554) and the DOD-MURI award “Physics Constrained Stochastic-Statistical Models for Extended Range Environmental Prediction”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branicki, M., Chen, N. & Majda, A.J. Non-Gaussian Test Models for Prediction and State Estimation with Model Errors. Chin. Ann. Math. Ser. B 34, 29–64 (2013). https://doi.org/10.1007/s11401-012-0759-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-012-0759-3

Keywords

2000 MR Subject Classification

Navigation