Skip to main content

Advertisement

Log in

New Generations: Sequencing Machines and Their Computational Challenges

  • Survey
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

New generation sequencing systems are changing how molecular biology is practiced. The widely promoted $1000 genome will be a reality with attendant changes for healthcare, including personalized medicine. More broadly the genomes of many new organisms with large samplings from populations will be commonplace. What is less appreciated is the explosive demands on computation, both for CPU cycles and storage as well as the need for new computational methods. In this article we will survey some of these developments and demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris T D, Buzby P R, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch J W, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake S R, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z. Single-molecule DNA sequencing of a viral genome. Science, 2008, 320(5872): 106-109.

    Article  Google Scholar 

  2. Fuller C W, Middendorf L R, Benner S A, Church G M, Harris T, Huang X, Jovanovich S B, Nelson J R, Schloss J A, Schwartz D C, Vezenov D V. The challenges of sequencing by synthesis. Nat. Biotechnol., 2009, 27(11): 1013-1023.

    Article  Google Scholar 

  3. Pemov A, Modi H, Chandler D P, Bavykin S. DNA analysis with multiplex microarray-enhanced PCR. Nucleic Acids Res., 2005, 33(2): e11.

    Article  Google Scholar 

  4. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281(5375): 363-365.

    Article  Google Scholar 

  5. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem., 1996, 242(1): 84-89.

    Article  Google Scholar 

  6. Bentley D R. Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 2006, 16(6): 545-552.

    Article  Google Scholar 

  7. Eid J, Fehr A, Gray J et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910): 133-138.

    Article  Google Scholar 

  8. Kasianowicz J J, Brandin E, Branton D, Deamer D W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA, 1996, 93(24): 13770-13773.

    Article  Google Scholar 

  9. Astier Y, Braha O, Bayley H. Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J. Am. Chem. Soc., 2006, 128(5): 1705-1710.

    Article  Google Scholar 

  10. Branton D, Deamer D W, Marziali A et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol., 2008, 26(10): 1146-1153.

    Article  Google Scholar 

  11. Sigalov G, Comer J, Timp G, Aksimentiev A. Detection of DNA sequences using an alternating electric field in a nanopore capacitor. Nano. Lett., 2008, 8(1): 56-63.

    Article  Google Scholar 

  12. Jett J H, Keller R A, Martin J C, Marrone B L, Moyzis R K, Ratliff R L, Seitzinger N K, Shera E B, Stewart C C. Highspeed DNA sequencing: An approach based upon fluorescence detection of single molecules. J. Biomol. Struct. Dyn., 1989, 7(2): 301-309.

    Google Scholar 

  13. Clarke J, Wu H C, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol., 2009, 4(4): 265-270.

    Article  Google Scholar 

  14. Zhang M Q, Smith A D. Challenges in understanding genomewide DNA methylation. J. Comput. Sci. & Technol., 2010, 25(1): 26-34.

    Article  Google Scholar 

  15. Morozova O, Marra M. Applications of next-generation sequencing technologies in functional genomics. Genomics, 2008, 92(5): 255-264.

    Article  Google Scholar 

  16. Chen Y, Souaiaia T, Chen T. PerM: Efficient mapping of short sequencing reads with periodic full sensitive spaced seeds. Bioinformatics, 2009, 25 (19): 2514-2521.

    Article  Google Scholar 

  17. Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res., June 11, 1979, 6(7): 2601-2610.

    Article  Google Scholar 

  18. Gingeras T R, Milazzo J P, Sciaky D, Roberts R J. Computer programs for the assembly of DNA sequences. Nucleic Acids Res., September 25, 1979, 7(9): 529-545.

    Article  Google Scholar 

  19. Gallant J, Maier D, Storer J. On finding minimal length superstrings. J. Computer System Sci., 1980, 20(1): 50-58.

    Article  MATH  MathSciNet  Google Scholar 

  20. Waterman M S. Introduction to Computational Biology. Chapman & Hall, 1995.

  21. Kececioglu J D, Myers E W. Combinatiorial algorithms for DNA sequence assembly. Algorithmica, 1995, 13(1/2): 7-51.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kececioglu J D. Exact and approximation algorithms for DNA sequence reconstruction [Ph.D. Dissertation]. University of Arizona, Tucson, USA, 1992.

  23. Myers E W. Toward simplifying and accurately formulating fragment assembly. Journal of Computational Biology, 1995, 2(2): 275-290.

    Article  Google Scholar 

  24. Myers E S. The fragment assembly string graph. Bioinformatics, 2005, 21(Suppl. 2): ii79-ii85.

    Article  Google Scholar 

  25. Venter J C, Adams M D, Myers E W et al. The sequence of the human genome. Science, 2001, 291: 1304-1351.

    Google Scholar 

  26. Lander E S, Linton L M, Birren B et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.

    Article  Google Scholar 

  27. Istrail S, Sutton G, Florea L et al. Whole genome shotgun assembly and comparison of human genome assemblies. Proc. Natl. Acad. Sci. USA, 2003, 101(7): 1916-1921.

    Article  Google Scholar 

  28. Idury R, Waterman M S. A new algorithm for DNA sequence. J. Comput. Biol., 1995, 2(2): 291-306.

    Article  Google Scholar 

  29. Chaisson M J, Pevzner P A. Short read fragment assembly of bacterial genomes. Genome Res., 2008, 18(2): 324-330.

    Article  Google Scholar 

  30. Chaisson M J, Tang H, Pevzner P A. Fragment assembly with short reads. Bioinformatics, 2004, 20(13): 2067-2074.

    Article  Google Scholar 

  31. Myers E W. The fragment assembly string graph. Bioinformatics, 2005, 21(Suppl. 2): ii79-ii85, doi:10.1093/bioinformatics/bti7114.

  32. Pevzner P A, Tang H. Fragment assembly with doublebarreled data. Bioinformatics, 2001, 17(Suppl. 1): S225-S233.

    Google Scholar 

  33. Pevzner P A, Tang H, Waterman M S. A Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA, 2001, 98(17): 9748-9753.

    Article  MATH  MathSciNet  Google Scholar 

  34. Zerbino D R, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 2008, 18(5): 821-829.

    Article  Google Scholar 

  35. Church D M, Goodstadt L, Hillier L W et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol., 2009, 7(5): e1000112.

    Article  Google Scholar 

  36. Valouev A, Schwartz D C, Zhou S, Waterman M S. An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl. Acad. Sci. USA, 2006, 103(43): 15770-15775.

    Article  Google Scholar 

  37. Nagarajan N, Read T D, Pop M. Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics, 2008, 24(10): 1229-1235.

    Article  Google Scholar 

  38. Schwartz D C, Li X, Hernandez L, Ramnarain S P, Huff E J, Wang Y K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science, 1993, 262(5130): 110-114.

    Article  Google Scholar 

  39. Zhou S, Herschleb J, Schwartz D C. A Single Molecule System forWhole Genome Analysis. New Methods for DNA Sequencing, Mitchelson K R (ed)., Amsterdam: Elsevier, 2007.

  40. Dimalanta E T, Lim A, Runnheim R et al. A microfluidic system for large DNA molecule arrays. Anal. Chem., 2004, 76(18): 5293-5301.

    Article  Google Scholar 

  41. Valouev A, Zhang Y, Schwartz D C, Waterman M S. Refinement of optical map assemblies (original paper). Bioinformatics, 2006, 22(10): 1217-1224.

    Article  Google Scholar 

  42. Valouev A, Li L, Liu Y C, Schwartz D C, Yang Y, Zhang Y, Waterman M S. Alignment of optical maps. J. Comput. Biol., 2006, 13(2): 442-462.

    Article  MathSciNet  Google Scholar 

  43. Jo K, Dhingra D M, Odijk T et al. A single-molecule barcoding system using nanoslits for DNA analysis. Proc. Natl. Acad. Sci. USA, 2007, 104(8): 2673-2678.

    Article  Google Scholar 

  44. Ramanathan A, Pape L, Schwartz D C. High-density polymerase-mediated incorporation of fluorochrome-labeled nucleotides. Analytical Biochemistry, 2005, 337(1): 1-11.

    Article  Google Scholar 

  45. Ramanathan A, Huff E J, Lamers C C, Potamousis K D. Forrest D K, Schwartz D C. An integrative approach for the optical sequencing of single DNA molecules. Analytical Biochemistry, 2004, 330(2): 227-241.

    Article  Google Scholar 

  46. Zhou S, Pape L, Schwartz D C. Optical Sequencing: Acquisition from Mapped Single Molecule Templates. Next Generation Genome Sequencing: Towards Personalized Medicine, Janitz M (ed.), 2008, Weinheim: Wiley-VCH Verlag & Co., pp.133-149.

  47. Aguilera A, Gomez-Gonzalez B. Genome instability: A mechanistic view of its causes and consequences. Nat. Rev. Genet., 2008, 9(3): 204-217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Schwartz.

Additional information

This work is supported by NIH under Grant No. R01 HG000225 (DCS) and NSF of USA under Grant No. DBI-0501818 (DCS).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, D.C., Waterman, M.S. New Generations: Sequencing Machines and Their Computational Challenges. J. Comput. Sci. Technol. 25, 3–9 (2010). https://doi.org/10.1007/s11390-010-9300-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-010-9300-x

Keywords

Navigation