Skip to main content
Log in

Molekulare Darmmikrobiomdiagnostik

Einblick in unser anderes Genom

Molecular diagnostic workup of the gut microbiome

Insight into our other genome

  • Schwerpunkt
  • Published:
Der Gastroenterologe Aims and scope

Zusammenfassung

Fortschritte in der DNA-Sequenziertechnik und in anderen „Omics-Technologien“ ermöglichen einen neuen Blick auf die menschliche Darmflora als hochdiverse mikrobielle Gemeinschaft, die eine Vielzahl von physiologischen Funktionen erfüllt. Die Zusammensetzung der Flora ist interindividuell verschieden, folgt aber bestimmten Organisationsprinzipien und ist innerhalb eines Individuums über die Zeit bemerkenswert stabil. Es wurde daher vorgeschlagen, die Darmbakterien als zusätzliches Organ zu verstehen. Die Interaktionen von Wirt und Flora sind komplex und deuten auf eine koevolvierte Symbiose hin, in der beide Partner von dem stabilen metabolischen Zusammenspiel profitieren. Die „gespeicherte“ genetische Information ist 100-mal höher als die des menschlichen Genoms und beeinflusst eine Vielzahl von physiologischen Prozessen, von der Verdauung bis zur Prägung des Immunsystems. Störungen dieses Ökosystems sind mit einer Vielzahl an chronischen Erkrankungen, wie Adipositas, Diabetes mellitus Typ I/II, Fettlebererkrankungen und chronisch-entzündliche Darmerkrankungen, assoziiert. Es ist daher eine wichtige Frage für die Entwicklung der inneren Medizin, wie das neue Wissen um die Darmflora diagnostisch und therapeutisch nutzbar gemacht werden kann. In der vorliegenden Übersicht werden Methoden der Mikrobiomdiagnostik kritisch beleuchtet und die Frage gestellt, welche Felder perspektivisch von einer rationalen Therapie des Darmmikrobioms (Bakteriotherapie/Ökobiotika) profitieren werden.

Abstract

Recent advances in high-throughput sequencing enabled a novel view at the gut microbiome and its diverse functions for normal human physiology. While the composition of the intestinal microbiota is highly variable between individuals, distinct organizational principles (e. g. enterogradients, core gut microbiome) have been identified. It has thus been suggested that the gut microbiome can be understood as an additional organ system with genetic information content 100-times higher than the genome size of its human host. It is perceived that disturbed host–microbial interactions and related inflammatory signaling play important roles in the etiology of a number of human diseases including metabolic disorders (e. g. obesity, types 1 and 2 diabetes, non-alcoholic fatty liver disease), chronic inflammatory disorders (e. g. inflammatory bowel diseases, psoriasis), but also in certain forms of cancer affecting the gastrointestinal tract (e. g. colonic or hepatocellular cancer). In this review we will thus critically describe methods which have been developed to exploit the diagnostic potential of the gut microbiota. As a perspective, we will discuss the therapeutic potential of targeted bacteriotherapy/ecobiotics for selected fields of internal medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920. doi:10.1126/science.1104816

    Article  PubMed  Google Scholar 

  2. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. doi:10.1126/science.1058709

    Article  CAS  PubMed  Google Scholar 

  3. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. doi:10.1016/j.cell.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  4. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230. doi:10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(2009):4153–4158. doi:10.1113/jphysiol.2009.174136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marotz C, Knight R (2016) Culturing: looking it up in our gut. Nat Microbiol 1:16169. doi:10.1038/nmicrobiol.2016.169

    Article  PubMed  Google Scholar 

  7. Dominguez-Bello MG et al (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22:250–253. doi:10.1038/nm.4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Planer JD et al (2016) Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature 534:263–266. doi:10.1038/nature17940

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Johansson ME, Hansson GC (2011) Microbiology. Keeping bacteria at a distance. Science 334:182–183. doi:10.1126/science.1213909

    Article  CAS  PubMed  Google Scholar 

  10. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1):4659–4665. doi:10.1073/pnas.1006451107

    Article  CAS  PubMed  Google Scholar 

  11. Cario E et al (2006) Trypsin-sensitive modulation of intestinal epithelial MD-2 as mechanism of lipopolysaccharide tolerance. J Immunol 176:4258–4266

    Article  CAS  PubMed  Google Scholar 

  12. Rescigno M (2009) Gut commensal flora: tolerance and homeostasis. F1000 Biol Rep 1:9. doi:10.3410/B1-9

    PubMed  PubMed Central  Google Scholar 

  13. Swiatczak B, Rescigno M (2012) How the interplay between antigen presenting cells and microbiota tunes host immune responses in the gut. Semin Immunol 24:43–49. doi:10.1016/j.smim.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  14. Olszak T et al (2012) Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336:489–493. doi:10.1126/science.1219328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lindner C et al (2015) Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat Immunol 16:880–888. doi:10.1038/ni.3213

    Article  CAS  PubMed  Google Scholar 

  16. Turnbaugh PJ et al (2007) The human microbiome project. Nature 449:804–810. doi:10.1038/nature06244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sommer F, Backhed F (2013) The gut microbiota – masters of host development and physiology. Nat Rev Microbiol 11:227–238. doi:10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  19. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280. doi:10.1371/journal.pbio.0060280

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 108(Suppl 1):4554–4561. doi:10.1073/pnas.1000087107

    Article  CAS  PubMed  Google Scholar 

  21. Relman DA (2012) The human microbiome: ecosystem resilience and health. Nutr Rev 70(Suppl 1):S2–S9. doi:10.1111/j.1753-4887.2012.00489.x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540

    Article  CAS  PubMed  Google Scholar 

  23. Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180. doi:10.1038/nature09944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cotillard A et al (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588. doi:10.1038/nature12480

    Article  CAS  PubMed  Google Scholar 

  25. Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108. doi:10.1126/science.1208344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hildebrand F et al (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4. doi:10.1186/gb-2013-14-1-r4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J et al (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci USA 111:E2703–E2710. doi:10.1073/pnas.1402342111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dierkes C et al (2009) Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 9:126. doi:10.1186/1471-2334-9-126

    Article  PubMed  PubMed Central  Google Scholar 

  29. Millar BC, Xu J, Moore JE (2007) Molecular diagnostics of medically important bacterial infections. Curr Issues Mol Biol 9:21–39

    CAS  PubMed  Google Scholar 

  30. Maurer JJ (2011) Rapid detection and limitations of molecular techniques. Annu Rev Food Sci Technol 2:259–279. doi:10.1146/annurev.food.080708.100730

    Article  CAS  PubMed  Google Scholar 

  31. McLoughlin KS (2011) Microarrays for pathogen detection and analysis. Brief Funct Genomics 10:342–353. doi:10.1093/bfgp/elr027

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolk DM, Kaleta EJ, Wysocki VH (2012) PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn 14:295–304. doi:10.1016/j.jmoldx.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  33. Collins DA, Elliott B, Riley TV (2015) Molecular methods for detecting and typing of Clostridium difficile. Pathology 47:211–218. doi:10.1097/PAT.0000000000000238

    Article  CAS  PubMed  Google Scholar 

  34. Su G et al (2015) 16S ribosomal ribonucleic acid gene polymerase chain reaction in the diagnosis of bloodstream infections: a systematic review and meta-analysis. PLoS ONE 10:e0127195. doi:10.1371/journal.pone.0127195

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Morrison S, Tang YW (2015) Multiplex polymerase chain reaction tests for detection of pathogens associated with gastroenteritis. Clin Lab Med 35:461–486. doi:10.1016/j.cll.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M (2016) Diagnostic ’omics’ for active tuberculosis. BMC Med 14:37. doi:10.1186/s12916-016-0583-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jordana-Lluch E et al (2015) Evaluation of the broad-range PCR/ESI-MS technology in blood specimens for the molecular diagnosis of bloodstream infections. PLoS ONE 10:e0140865. doi:10.1371/journal.pone.0140865

    Article  PubMed  PubMed Central  Google Scholar 

  38. Desmet S, Maertens J, Bueselinck K, Lagrou K (2016) Broad-range PCR coupled with electrospray ionization time of flight mass spectrometry for detection of bacteremia and fungemia in patients with neutropenic fever. J Clin Microbiol 54:2513–2520. doi:10.1128/JCM.01066-16

    Article  CAS  PubMed  Google Scholar 

  39. Metzgar D et al (2016) The IRIDICA BAC BSI assay: rapid, sensitive and culture-independent identification of bacteria and candida in blood. PLoS ONE 11:e0158186. doi:10.1371/journal.pone.0158186

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stralin K et al (2016) The IRIDICA PCR/Electrospray ionization-mass spectrometry assay on bronchoalveolar lavage for bacterial etiology in mechanically ventilated patients with suspected pneumonia. PLoS ONE 11:e0159694. doi:10.1371/journal.pone.0159694

    Article  PubMed  PubMed Central  Google Scholar 

  41. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. doi:10.1038/nature07517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blaxter M et al (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond, B, Biol Sci 360:1935–1943. doi:10.1098/rstb.2005.1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310. doi:10.1371/journal.pone.0027310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gevers D, Pop M, Schloss PD, Huttenhower C (2012) Bioinformatics for the Human Microbiome Project. PLoS Comput Biol 8:e1002779. doi:10.1371/journal.pcbi.1002779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Whittaker RW, Willis KJ, Field R (1991) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28(4):453–470

    Article  Google Scholar 

  48. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  49. Rondon MR et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. doi:10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilbert JA et al (2010) Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci 3:243–248. doi:10.4056/sigs.1433550

    Article  PubMed  PubMed Central  Google Scholar 

  52. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010:pdb.prot5368. doi:10.1101/pdb.prot5368

    Article  PubMed  Google Scholar 

  53. Lax S et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. doi:10.1126/science.1254529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maccaferri S, Biagi E, Brigidi P (2011) Metagenomics: key to human gut microbiota. Dig Dis 29:525–530. doi:10.1159/000332966

    Article  PubMed  Google Scholar 

  55. Moore AM, Munck C, Sommer MO, Dantas G (2011) Functional metagenomic investigations of the human intestinal microbiota. Front Microbiol 2:188. doi:10.3389/fmicb.2011.00188

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tasse L et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605–1612. doi:10.1101/gr.108332.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li J et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. doi:10.1038/nbt.2942

    Article  CAS  PubMed  Google Scholar 

  58. Nielsen HB et al (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822–828. doi:10.1038/nbt.2939

    Article  CAS  PubMed  Google Scholar 

  59. Westermann AJ et al (2016) Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529:496–501. doi:10.1038/nature16547

    Article  CAS  PubMed  Google Scholar 

  60. Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630. doi:10.1038/nrmicro2852

    Article  CAS  PubMed  Google Scholar 

  61. Verberkmoes NC et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189. doi:10.1038/ismej.2008.108

    Article  CAS  PubMed  Google Scholar 

  62. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  63. Prokhorova TA et al (2009) Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol Cell Proteomics 8:959–970. doi:10.1074/mcp.M800287-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eiseman B, Silen W, Bascom GS, Kauvar AJ (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44:854–859

    CAS  PubMed  Google Scholar 

  65. van Nood E et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. doi:10.1056/NEJMoa1205037

    Article  PubMed  Google Scholar 

  66. Hagel S et al (2016) Fecal microbiota transplant in patients with recurrent Clostridium difficile infection. Dtsch Ärztebl Int 113:583–589. doi:10.3238/arztebl.2016.0583

    PubMed  Google Scholar 

  67. Kelly CR et al (2016) Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann Intern Med 165:609–616. doi:10.7326/M16-0271

    Article  PubMed  Google Scholar 

  68. Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, Rosenstiel P, Schreiber S (2016) Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology. pii:S0016-5085(16):35354–35359. doi:10.1053/j.gastro.2016.11.010

  69. Borody TJ, Khoruts A (2011) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88–96. doi:10.1038/nrgastro.2011.244

    Article  PubMed  Google Scholar 

  70. Colman RJ, Rubin DT (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis 8:1569–1581. doi:10.1016/j.crohns.2014.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  71. Moayyedi P et al (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149(1):102–109.e6. doi:10.1053/j.gastro.2015.04.001

    Article  PubMed  Google Scholar 

  72. Smits LP, Bouter KE, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145:946–953. doi:10.1053/j.gastro.2013.08.058

    Article  PubMed  Google Scholar 

  73. Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M (2005) Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6:376–388. doi:10.1038/nrg1607

    Article  CAS  PubMed  Google Scholar 

  74. Kaser A, Zeissig S, Blumberg RS (2010) Inflammatory bowel disease. Annu Rev Immunol 28:573–621. doi:10.1146/annurev-immunol-030409-101225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Swidsinski A et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    Article  PubMed  Google Scholar 

  76. Ott SJ, Musfeldt M, Ullmann U, Hampe J, Schreiber S (2004) Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol 42:2566–2572. doi:10.1128/JCM.42.6.2566-2572.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ott SJ et al (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ott SJ et al (2008) Dynamics of the mucosa-associated flora in ulcerative colitis patients during remission and clinical relapse. J Clin Microbiol 46:3510–3513. doi:10.1128/JCM.01512-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sokol H et al (2006) Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm Bowel Dis 12:106–111

    Article  PubMed  Google Scholar 

  80. Gevers D et al (2014) The treatment-naive microbiome in new-onset Crohn’s disease. cell Hostmicrobe 15:382–392. doi:10.1016/j.chom.2014.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rehman A et al (2015) Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 65(2):238–248. doi:10.1136/gutjnl-2014-308341

    Article  PubMed  Google Scholar 

  82. Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499. doi:10.1053/j.gastro.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang W et al (2015) Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm Bowel Dis 21:1419–1427. doi:10.1097/MIB.0000000000000344

    PubMed  PubMed Central  Google Scholar 

  84. Lepage P et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158. doi:10.1136/gutjnl-2011-301805

    Article  PubMed  Google Scholar 

  85. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci USA 109:594–599. doi:10.1073/pnas.1116053109

    Article  CAS  PubMed  Google Scholar 

  86. Adolph TE et al (2013) Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–276. doi:10.1038/nature12599 (http://www.nature.com/nature/journal/v503/n7475/abs/nature12599.html – supplementary information)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Couturier-Maillard A et al (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest 123:700–711. doi:10.1172/JCI62236

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hashimoto T et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487:477–481. doi:10.1038/nature11228

    Article  CAS  PubMed  Google Scholar 

  89. Hasler R et al (2016) Uncoupling of mucosal gene regulation, mRNA splicing and adherent microbiota signatures in inflammatory bowel disease. Gut. doi:10.1136/gutjnl-2016-311651

    PubMed  Google Scholar 

Download references

Danksagung

Das Feld der Mikrobiomforschung ist mittlerweile sehr groß; eine solche Übersicht, die eine Perspektive beschreibt und kein systematischer Übersichtsartikel ist, muss daher unvollständig bleiben. Der Autor möchte sich bei allen Wissenschaftlern des Felds bedanken, die durch ihre Arbeiten das Wissen vorangebracht haben, die aber in den Zitaten unerwähnt geblieben sind.

Förderung

Die Arbeiten des Labors werden unterstützt vom Exzellenzcluster Inflammation at Interfaces, dem SFB 1182, dem EU-Antrag H2020 SysCID und dem BMBF Konsortium SysINFLAME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rosenstiel.

Ethics declarations

Interessenkonflikt

P. Rosenstiel gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

J. Hampe, Dresden

S. Schreiber, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenstiel, P. Molekulare Darmmikrobiomdiagnostik . Gastroenterologe 12, 49–59 (2017). https://doi.org/10.1007/s11377-016-0129-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11377-016-0129-x

Schlüsselwörter

Keywords

Navigation