Skip to main content
Log in

A survey of non-prehensile pneumatic manipulation surfaces: principles, models and control

  • Special Issue
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Many manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Newway Air Bearings, Aston, USA, http://www.newwayairbearings.com/.

  2. Portec, Aadorf, Switzerland, http://www.portec.ch/.

  3. ZS-Handling, Regensburg, Germany, http://www.zs-handling.com/.

Abbreviations

\(\alpha \) :

Object orientation

\(\lambda \) :

Surface flow

\(\mu \) :

Dynamic viscosity of air

\(\rho \) :

Air density

\(\theta \) :

Inclination angle of the nozzles from the vertical

A :

Cross-sectional area of the object

a :

Section area of a nozzle

\(C_\mathrm{D}\) :

Drag coefficient

\(C_\mathrm{F}\) :

Friction coefficient

\(C_\mathrm{P}\) :

Propulsive force coefficient

\(F_\mathrm{D}\) :

Drag force

\(F_\mathrm{L}\) :

Lifting force

\(F_\mathrm{P}\) :

Propulsive force

h :

Levitation height

M :

Propulsive moment

m :

Object mass

n :

Number of sinks or air-jets

p :

Pressure beneath the object

\(q_{e}\) :

Volume rate flowing through a nozzle

S :

Under surface area of the object

T :

Transmission matrix

U :

Horizontal velocity field of the flow over the surface

\(U_{e}\) :

Exit speed of air in nozzle

V :

Object speed along direction X

x :

Object position along direction X

y :

Object position along direction Y

References

  1. McGary EL (1900) Air conveyer. U.S. Patent 662,574

  2. Hagler RG (1973) Transporting and positioning system. U.S. Patent 3,717,381

  3. Babinski JP, Bertelsen BI, Raacke KH, Sirgo VH,Townsend CJ (1976) Transport system for semiconductor wafer multiprocessing station system. U.S. Patent 3,976,330

  4. Paivanas JA, Hassan JK (1979) Air film system for handling semiconductor wafers. IBM J Res Dev 23(4):361–375

    Article  Google Scholar 

  5. Hassan JK , Paivanas JA (1979) Pneumatic control of the motion of objects suspended on an air film. U.S. Patent 4,165,132

  6. Hassan JK, Paivanas JA (1978) Wafer air film transportation system. U.S. Patent 4,081,201

  7. Konishi S, Fujita H (1994) A conveyance system using air flow based on the concept of distributed micro motion systems. IEEE/ASME J Microelectromech Syst 3(2):54–58

    Article  Google Scholar 

  8. Schilp M, Zimmermann J, Zitzmann A (2011) Device for non-contact transporting and holding of objects or material. U.S. Patent 0,311,320

  9. Reinhart G, Hoeppner J (2000) Non-contact handling using high-intensity ultrasonics. CIRP Ann-Manuf Technol 49(1):5–8

    Article  Google Scholar 

  10. Reinhart G, Heinz M, Stock J, Zimmermann J, Schilp M, Zitzmann A, Hellwig J (2011) Non-contact handling and transportation for substrates and microassembly using ultrasound-air-film-technology. In: Proceedings of the IEEE/SEMI advanced semiconductor manufacturing conference, pp 1–6

  11. Ueha S, Hashimoto Y, Koike Y (2000) Non-contact transportation using near-field acoustic levitation. Ultrasonics 38:26–32

    Article  Google Scholar 

  12. Varsos K, Luntz J (2006) Superposition methods for distributed manipulation using quadratic potential force fields. IEEE Trans Robot 22(6):1202–1215

    Article  Google Scholar 

  13. Luntz J, Moon H (2001) Distributed manipulation with passive air flow. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 195–201

  14. Varsos K, Moon H, Luntz J (2006) Generation of quadratic potential force fields from flow fields for distributed manipulation. IEEE Trans Robot 22(1):108–118

    Article  Google Scholar 

  15. Moon H, Luntz J (2006) Distributed manipulation of flat objects with two airflow sinks. IEEE Trans Robot 22(6):1189–1201

    Article  Google Scholar 

  16. Laurent GJ, Delettre A, Le Fort-Piat N (2011) A new aerodynamic traction principe for handling products on an air cushion. IEEE Trans Robot 27(2):379–384

    Article  Google Scholar 

  17. Delettre A, Laurent GJ, Le Fort-Piat N, Varnier C (2012) 3-dof potential air flow manipulation by inverse modeling control. In: Proceedings of the IEEE international conference on automation science and engineering, pp 926–931

  18. Delettre A, Laurent GJ, Haddab Y, Le Fort-Piat N (2012) Robust control of a planar manipulator for flexible and contactless handling. Mechatronics 22(6):852–861

    Article  Google Scholar 

  19. Delettre A, Laurent GJ, Le Fort-Piat N (2011) 2-dof contactless distributed manipulation using superposition of induced air flows. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 5121–5126

  20. Berlin A, Biegelsen D, Cheung P, Fromherz M, Goldberg D, Jackson W, Preas B, Reich J, Swartz L-E (2000) Motion control of planar objects using large-area arrays of mems-like distributed manipulators. Xerox Palo Alto Research Center CA/USA, presented at Micromechatronics. http://www2.parc.com/fromherz/publications/sm-micromech00.pdf. Accessed 10 June 2015

  21. Biegelsen DK, Berlin A, Cheung P, Fromherz MPJ, Goldberg D, Jackson WB, Preas B, Reich J, Swartz L-E (2000) Air-jet paper mover: an example of meso-scale mems. In: SPIE international symposium on micromachining and microfabrication

  22. Jackson WB, Fromherz MPJ, Biegelsen DK, Reich J, Goldbergb D (2001) Constrained optimization based control of real time large-scale systems: airjet object movement system. In: Proceedings of the IEEE conference on decision and control, Orlando, Florida, Dec, pp 4–7

  23. Fukuta Y, Mita Y, Arai M, Fujita H (2003) Pneumatic two-dimensional conveyance system for autonomous distributed mems. In: Proceedings of the 12th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS’03), vol 2, pp 1019–1022

  24. Fukuta Y, Yanada M, Ino A, Mita Y, Chapuis Y-A, Konishi S, Fujita H (2004) Conveyor for pneumatic two-dimensional manipulation realized by arrayed mems and its control. J Robot Mechatron 16(2):163–170

    Google Scholar 

  25. Fukuta Y, Chapuis Y-A, Mita Y, Fujita H (2006) Design, fabrication and control of mems-based actuator arrays for air-flow distributed micromanipulation. IEEE/ASME J Microelectromech Syst 15(4):912–926

    Article  Google Scholar 

  26. Teschler L (2008) Next big challenge for pv makers: wafer handling. Mach Des pp 1–7. http://machinedesign.com/archive/next-big-challenge-pv-makers-wafer-handling. Accessed 10 June 2015

  27. International Technology Roadmap For Semiconductors (2013) The ITRS is Jointly Sponsored by European Semiconductor Industry Association, Japan Electronics and Information Technology Industries Association,Korea Semiconductor Industry Association, Taiwan Semiconductor Industry Association, Semiconductor Industry Association

  28. Hoetzle M, Dunifon T, Rozevink L (2003) Glass transportation system. U.S. Patent 6,505,483

  29. Pister KSJ, Fearing R, Howe R (1990) A planar air levitated electrostatic actuator system. In: Proceedings of the IEEE workshop on micro electro mechanical systems (MEMS), pp 67–71, Napa Valley, California

  30. Lee Y-C, Chin-Chang Y, Tsai R-Y, Hsiao J-C, Chen C-H, Huang S-K (2011) Development of a porous ceramic-based air float platform for large glass substrates. Spec Top Rev Porous Media Int J 2(4):313–321

    Article  Google Scholar 

  31. Fourka M, Bonis M (1997) Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems. Wear 210(1–2):311–317

    Article  Google Scholar 

  32. Schenk C, Buschmann S, Risse S, Eberhardt R, Tnnermann A (2008) Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions. Precis Eng 32(4):319–328

    Article  Google Scholar 

  33. Devitt AJ (2011) Non-contact porous air bearing and glass flattening device. U.S. Patent 7,908,885

  34. Salbu E (1964) Compressible squeeze films and squeeze bearings. J Basic Eng 86:355–366

    Article  Google Scholar 

  35. Hashimoto Y, Koike Y, Ueha S (1996) Near-field acoustic levitation of planar specimens using flexural vibration. J Acoust Soc Am 100(4):2057–2061

    Article  Google Scholar 

  36. Amano T, Koike Y, Nakamura K, Ueha S, Hashimoto Y (2000) A multi-transducer near field acoustic levitation system for noncontact transportation of large-sized planar objects. Jpn J Appl Phys 39:2982–2985

    Article  Google Scholar 

  37. Höppner J, Zimmermann J (2003) Device for contactlessly gripping and positioning components. U.S. Patent 6,647,791

  38. Zimmermann J, Jacob D, Zitzmann A (2007) Device for conveying and positioning of structural elements in non-contact way. U.S. Patent 7,260,449

  39. Hashimoto Y, Koike Y, Ueha S (1998) Transporting objects without contact using flexural traveling waves. J Acoust Soc Am 103(6):3230–3233

    Article  Google Scholar 

  40. Moon H, Luntz J (2004) Prediction of equilibria of lifted logarithmic radial potential fields. Int J Robot Res 23(7–8):747–762

    Article  Google Scholar 

  41. Agnus J, Chaillet N, Clévy C, Dembélé S, Gauthier M, Haddab Y, Laurent G, Lutz P, Piat N, Rabenorosoa K, Rakotondrabe M, Tamadazte B (2013) Robotic microassembly and micromanipulation at femto-st. J Micro-Bio Robot 8(2):91–106

    Article  Google Scholar 

  42. Wesselingh J, van Ostayen RAJ, Spronck JW, Munnig Schmidt RH, van Eijk J (2008) Actuator for contactless transport and positioning of large flat substrates. In: Proceedings of the EUSPEN international conference

  43. van Rij J, Wesselingh J, van Ostayen RAJ, Spronck JW, Munnig Schmidt RH, van Eijk J (2009) Planar wafer transport and positioning on an air film using a viscous traction principle. Tribol Int 42:1542–1549

    Article  Google Scholar 

  44. Wesselingh J, Spronck JW, van Ostayen RAJ, van Eijk J (2010) Contactless 6 dof planar positioning system utilizing an active air film. In: Proceedings of the EUSPEN international conference

  45. Wesselingh J, Spronck JW, van Ostayen RAJ, van Eijk J (2011) Air film based contactless planar positioning system with sub-micron precision. In: Proceedings of the EUSPEN international conference

  46. Toda M, Ohmi T, Nitta T, Saito Y, Kanno Y, Umeda M, Yagai M, Kidokoro H (1997) \(\text{ N }_2\) tunnel wafer transport system. J Inst Environ Sci 40(1):23–28

    Google Scholar 

  47. Toda M, Umeda M, Kanno Y, Ohmi T (2000) Floating apparatus of substrate. EP 1,005,076

  48. Moon I-H, Hwang Y-K (2006) Evaluation of a wafer transportation speed for propulsion nozzle array on air levitation system. J Mech Sci Technol 20(9):1492–1501

    Article  Google Scholar 

  49. Kim Y-J, Shin DH (2006) Wafer position sensing and motion control in the clean tube system. In: Proceedings of the IEEE international conference on industrial technology, pp 1315–1319

  50. Shin DH, Lee HG, Kim HS (2005) Wafer positioning control of clean tube system. In: Proceedings of the ACSE conference

  51. Takaki T, Tanaka S, Aoyama T, Ishii I (2014) Position/attitude control of an object by controlling a fluid field using a grid pattern air nozzle. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 6162–6167

  52. Hirata T, Akashi T, Bertholds A, Gruber HP, Schmid A, Gretillat M-A, Guenat OT, De Rooij NF (1998) A novel pneumatic actuator system realised by micro-electro-discharge machining. In: Proceedings of the international workshop on micro electro mechanical systems, pp 160–165

  53. Hirata T, Guenat OT, Akashi T, Gretillat M-A, de Rooij N-F (1999) A numerical simulation on a pneumatic air table realized by micro-edm. J Microelectromech Syst 8(4):523–528

    Article  Google Scholar 

  54. Zeggari R, Yahiaoui R, Malapert J, Manceau J-F (2010) Design and fabrication of a new two-dimensional pneumatic micro-conveyor. Sens Actuators: A Phys 164:125–130

    Article  Google Scholar 

  55. Yahiaoui R, Zeggari R, Malapert J, Manceau J-F (2012) A mems-based pneumatic micro-conveyor for planar micromanipulation. Mechatronics 22(5):515–521

    Article  Google Scholar 

  56. Laurent GJ, Delettre A, Zeggari R, Yahiaoui R, Manceau J-F, Le Fort-Piat N (2014) Micropositioning and fast transport using a contactless micro-conveyor. Micromachines 5(1):66–80

    Article  Google Scholar 

  57. Fromherz MPJ, Jackson WB (2003) Force allocation in a large-scale distributed active surface. IEEE Trans Control Syst Technol 11(5):641–655

    Article  Google Scholar 

  58. Wilson SDR (1972) A note on laminar radial flow between parallel plates. Appl Sci Res 25(1):349–354

    Article  Google Scholar 

  59. Dube SN (1976) Linear radial flow of a viscous liquid between two parallel coaxial stationary infinite disks. Acta Phys Acad Sci Hung 40(2):95–103

    Article  Google Scholar 

  60. McDonald KT (2000) Radial viscous flow between two parallel annular plates. arXiv:physics/0006067

  61. Kim BS, Park K (2013) Numerical analysis of non contact transportation system for wafer warping. In: Proceedings of the international conference on mechanics, fluids, heat, elasticity and electromagnetic fields, pp 149–154

  62. White FM (2002) Fluid mechanics. McGraw-Hill Science/Engineering/Math, New York

    Google Scholar 

  63. Moon I-H, Hwang YK (2004) Evaluation of a propulsion force coefficients for transportation of wafers in an air levitation system. Korean J Air-Cond Refrig Eng 16(9):820–827

    Google Scholar 

  64. Chapuis Y-A, Zhou L, Fujita H, Herv Y (2008) Multi-domains simulation using vhdl-ams for distributed mems in functionnal environment: case of a 2-d air-jet micromanipulator. Sens Actuators A: Phys 148(1):224–238

    Article  Google Scholar 

  65. MacDonald N, Bohringer K, Donald B (1999) Programmable vector fields for distributed manipulation with applications to mems actuator arrays and vibratory parts feeders. Int J Robot Res 18:168–200

    Article  Google Scholar 

  66. Chapuis Y-A, Zhou L, Fukuta Y, Mita Y, Fujita H (2007) Fpga-based decentralized control of arrayed mems for microrobotic application. IEEE Trans Ind Electron 54(4):1926–1936

    Article  Google Scholar 

  67. Iwaki S, Morimasa H, Noritsugu T, Kobayashi M (2011) Contactless manipulation of an object on a plane surface using multiple air jets. In: Proceedings of the IEEE international conference on robotics and automation, pp 3257–3262

  68. Wesselingh J, Spronck JW, van Ostayen RAJ, Munnig Schmidt RH, van Eijk J (2009) Contactless positioning using a thin air film. In: Proceedings of the EUSPEN international conference

  69. Matignon L, Laurent GJ, Le Fort-Piat N, Chapuis Y-A (2010) Designing decentralized controllers for distributed-air-jet mems-based micromanipulators by reinforcement learning. J Intel Robot Syst 59(2):145–166

    Article  Google Scholar 

  70. Boutoustous K, Laurent GJ, Dedu E, Matignon L, Bourgeois J, Le Fort-Piat N (2010) Distributed control architecture for smart surfaces. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 2018–2024

  71. Becker A, Sandheinrich A, Bretl T (2009) Automated manipulation of spherical objects in three dimensions using a gimbaled air jet. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 781–786

Download references

Acknowledgments

This work was supported in France by the Smart Blocks project (ANR-251-2011-BS03-005), by Labex ACTION Project (ANR-11-LABX-01-01) and by Région de Franche-Comté, and in Korea by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2013R1A1A2013636). Hyungpil Moon was a recipient of Erasmus Mundus scholarships recommended by Prof. Nadine Le Fort-Piat at ENSMM, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungpil Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, G.J., Moon, H. A survey of non-prehensile pneumatic manipulation surfaces: principles, models and control. Intel Serv Robotics 8, 151–163 (2015). https://doi.org/10.1007/s11370-015-0175-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-015-0175-0

Keywords

Navigation